

Reyrolle Protection Devices

7SG23 MSCDN – MP2B

Capacitor Unbalance Protection

Answers for energy

SIEMENS siemens-russia.com

Contents

Technical Manual Chapters

- 1. Description of Operation
- 2. Performance Specification
- 3. Relay Settings
- 4. Communications
- 5. Applications
- 6. Installation
- 7. Commissioning
- 8. maintenance
- 9. Diagrams

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02.	R5 Document reformat due to rebrand
16/09/2004	R4 VT Supervision added
13/02/2003	R3 All elements have Status Inhibit! Thermal has Status reset. General Typos.
11/02/2003	R2 Cut out and rear terminal diagrams moved to section 9
08/02/2003	R1 Revision history added

Software Revision History

23/03/2006	2621H80003R9c	

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

1	Introduction	4
2	Hardware Description	4
	2.1 General	4
	2.2 Current Inputs	5
	2.3 Voltage Inputs	5
	2.4 Status Inputs	5
	2.5 Output Relays	5
	2.6 Fascia LEDS	5
	2.7 Self Monitoring	5
	2.7.1 Protection Healthy/Defective	6
3	Protection Functions	6
	49 Reactor Thermal Overload Protection	6
	3.2 50/50N/51/51N Backup Overcurrent and Derived earth fault Protections	7
	3.3 27 Undervoltage Detector	7
	3.4 59DT Definite Time Overvoltage Protection	7
	3.5 59IT Inverse Time Overvoltage Protection	7
	3.6 Trip Circuit Supervision	8
	3.7 VT Supervision	9
4	Other Features	9
	I.1 Metering	9
	I.2 Data Storage	9
	4.2.1 General	9
	4.2.2 Time Synchronisation	9
	4.2.3 IRIG-B Time Synchronisation	9
	4.2.4 IEC 60870-5-103 Time Synchronisation	9
	4.2.5 Status Input Time Synchronisation.	9
	4.2.6 Real Time Clock Time Synchronisation	10
	4.2.7 Waveform Records.	10
	4.2.8 Event Records.	10
	4.2.9 Fault Recording	10
	.3 Communications	10
	.4 Settings Groups	11
_	5 Password Feature	11
5	User Interface	11
	5.1 Liquid Crystal Display	11
	2.2 Back light Control	11
		11
	.4 Keypad	12
		12
	5.6 Settings Mode	12
	5.0.1 Settings Adjustment	12
	5.0.2 Settings And Displays	13
		13
~		14
6	Diagrams	15

Figures

Figure 1- MSCDN-MP2B Overview	4
Figure 2 - Inverse Time Over voltage Curve	8
Figure 3 - Menu Structure	15
Figure 4 - Modular II relay internal view	16
Figure 5 - Modular II relay rear terminal view	16

1 Introduction

Figure 1- MSCDN-MP2B Overview

The MSCDN-MP2B integrated protection relay provides Reactor Thermal Overload, Backup Overcurrent and Earth Fault, Under and Overvoltage protection plus voltage transformer supervision for a capacitor bank. It is normally used in association with MSCDN-MP1 and MSCDN-MP2A which together provide a complete solution for Main 1 and Main 2 protection of capacitor banks.

The fully numerical design has been exploited to provide a unit, whose settings, characteristics and input/output configurations are software controlled which will allow the relay to be used for a wide variety of applications.

2 Hardware Description

2.1 General

The structure of the relay is based upon the Modular II hardware and software platform where the required cards plug in from the front after opening the front fascia. Modules are interconnected by means of ribbon cable. The relay may be supplied in a standard Epsilon case size E12 or E16 in either a horizontal or vertical arrangement. The Modular II design provides commonality between products and spare parts across a range of protection and control relays including Duobias, Ohmega, Delta, Tau and lota.

The unit, when fully configured would consist of the following modules:-

- PSU Module : Power supply unit + basic I/O module (5 output relays + 3 status inputs)
- IO1 Module : Expansion module giving an extra 8 output relays + 8 status inputs
- IO2 Module : Expansion module giving an extra 8 output relays + 8 status inputs

- IO3 Module : Expansion module giving an extra 8 output relays + 8 status inputs
- AN3 Module : Voltage input processing module
- AN2 Module : Current input processing module
- AN1 Module : Current input processing module
- CPU Module : Control processor module
- 2 x 20 LCD Fascia Module

2.2 Current Inputs

The current signals are sampled at 32 samples per cycle, which provides accurate measurements upto 750Hz (15th Harmonic).

2.3 Voltage Inputs

The voltage signals are sampled at 32 samples per cycle, which provides accurate measurements upto 750Hz (15^{th} Harmonic).

2.4 Status Inputs

The relay is fitted with 11 auxiliary status inputs. The user can program the relay to use any status input for any function. A timer is associated with each input and a pickup time setting may be applied to each input. In addition each input may be logically inverted to allow easy integration of the relay within the user scheme. Each input may be mapped to any front Fascia LED and/or to any Output Relay contact. This allows the Relay to act as panel indication for alarms and scheme status without having to use additional external flagging elements.

2.5 Output Relays

The relay is fitted with 13 output relays, all of which are capable of handling circuit breaker tripping duty. All relays are fully user configurable and can be programmed to operate from any or all of the control functions. There are three relays on the Power Supply/Basic I/O module, which have C/O contacts, and 2 with N/O contacts.

In their normal mode of operation output relays remain energised for a minimum of 100msec and a maximum dependent on the energising condition duration. If required, however, outputs can be programmed to operate as latching relays. These latched outputs can be reset by either pressing the TEST/RESET button, or by sending an appropriate communications command.

The operation of the contacts can be simply checked by using the Protection Healthy setting on the Output Relay Menu to energise each relay in turn. Do not forget to reset this setting back to its correct value.

The output relays can be used to operate the trip coils of the circuit breaker directly if the circuit breaker auxiliary contacts are used to break the trip coil current and the contact rating of the relay output contacts is not exceeded for 'make and carry' currents.

With a failed breaker condition the current 'break' may be transferred to the relay output contacts and where this level is above the break rating of the contacts an auxiliary relay with heavy-duty contacts should be utilised.

2.6 Fascia LEDS

In the E12 and E16 cases there are 32 user programmable LED flag indicators. By opening the front panel it is possible to insert a strip into a slip in pocket, which provides legend information about the meaning of each LED. The legend may be specified when ordering the relay or alternatively the user can create a customized legend. The user can customise which LED is used for which purpose as well as being able to program each LED as being latching or self –resetting.

2.7 Self Monitoring

The relay incorporates a number of self-monitoring features. Each of these features can initiate a controlled reset recovery sequence, which can be used to generate an alarm output. In addition, the Protection Healthy LED will give visual indication.

A watchdog timer continuously monitors the microprocessor. The voltage rails are also continuously supervised and the microprocessor is reset if any of the rails falls outside of their working ranges. Any failure is detected in sufficient time so that the micro can be shut down in a safe and controlled manner.

2.7.1 Protection Healthy/Defective

The normally closed contacts of relay 1 are used to signal protection defective, whilst the normally open contacts are used to signal protection healthy. When the DC supply is not applied to the relay or a problem is detected with the operation of the relay then this relay is de-energised and the normally closed contacts make to provide an external alarm. When the relay has DC supply and it has successfully passed its self-checking procedure then the Protection Healthy contacts are made and the Protection Defective contacts are opened.

3 Protection Functions

3.1 49 Reactor Thermal Overload Protection

The relay provides thermal overload protection for a reactor. The elements, one per phase, use 32 samples per cycle to provide a flat frequency response up to 550 Hz and beyond. The element is disabled by default. A status input may also be programmed to inhibit the element. The temperature of the protected equipment is not measured directly. Instead, thermal overload conditions are detected by calculating the RMS of the current flowing in each phase of the reactor

Should the RMS current rise above a defined level (the Overload Setting) for a defined time (the operating time t), the system will be tripped to prevent damage.

$$t = \tau \times \ln \left\{ \frac{\mathbf{I}^2 - \mathbf{I}_{\mathrm{P}}^2}{\mathbf{I}^2 - (k \times I_B)^2} \right\}$$

Time to trip

Where

I_P = Previous steady state current level

 I_B = Basic current of transformer, typically the same as In

k = Multiplier resulting in the overload pickup setting k.IB

I = The measured reactor current

 τ = Thermal time constant

Additionally, an alarm can be given if the thermal state of the system exceeds a specified percentage of the protected equipment's thermal capacity (Capacity Alarm).

For the heating curve:

$$\theta = \frac{I^2}{I_{\theta}^2} \cdot (1 - e^{-t/\tau}) \times 100\%$$

where: θ = thermal state at time t

 $\theta_{\rm F}$ = final thermal state before disconnection of device

I = measured thermal current

 I_{θ} = thermal overload current setting (or k.I_B

 τ = thermal time constant

The final steady state thermal condition can be predicted for any steady state value of input current since when $t > \tau$,

$$\theta_F = \frac{I^2}{I_B^2} \times 100\%$$

The thermal overload setting I_{θ} is expressed as a fraction of the relay nominal current and is equivalent to the factor k.I_B as defined in the IEC255-8 thermal operating characteristics. It is the value of current

above which 100% of thermal capacity will be reached after a period of time and it is therefore normally set slightly above the full load current of the protected device.

The thermal state may be reset via the fascia or externally via a status input. A status input may also be programmed to inhibit the element.

3.2 50/50N/51/51N Backup Overcurrent and Derived earth fault Protections

The relay provides true RMS backup Overcurrent and earth fault protection for the capacitor bank. The elements, one per phase, use 32 samples/cycle to provide a flat frequency response up to 550 Hz and beyond. The element is by default disabled by a setting. A status input may also be programmed to inhibit the element. The element provides instantaneous, time delayed and inverse time characteristics with IEC and ANSI curves. The elements reset characteristics can be set to have an instantaneous, delayed or ANSI decaying reset.

3.3 27 Undervoltage Detector

The relay provides true RMS measuring single-phase definite time under voltage detector. A guard element may be enabled to prevent the under voltage element from operating when there is a complete loss of. This can be disabled so that the element picks up for all under voltage conditions. A status input may be programmed to inhibit the element.

3.4 59DT Definite Time Overvoltage Protection

The relay provides true RMS measuring three-phase definite time over voltage protection. The elements, one per phase, use 32 samples per cycle to provide a flat frequency response up to 550 Hz and beyond. The element is by default disabled by a setting. A status input may also be programmed to inhibit the element. The element has an instantaneous reset characteristic.

3.5 59IT Inverse Time Overvoltage Protection

The relay provides true RMS measuring three-phase inverse time Overvoltage protection. The inverse curve is specified using a 7-point user defined curve. The elements, one per phase, use 32 samples per cycle to provide a flat frequency response up to 550 Hz and beyond. The element is by default disabled by a setting. A status input may also be programmed to inhibit the element. The element has an instantaneous reset characteristic but may also be changed to a time delayed reset via a setting.

The default curve is shown in Figure 2.

Figure 2 - Inverse Time Over voltage Curve

The curve is set using 7 data points, (X0,Y0), (X1,Y1), ...(X6,Y6). Voltages below X0, the initial pickup point will not result in the element operating. Care must be taken to always ensure that the following conditions are true when altering these settings

- $X0 \le X1$
- X1 ≤ X2
- X2 ≤ X3
- X3 ≤ X4
- X4 ≤ X5
- X5 ≤ X6

And

- $Y1 \le Y0$
- $Y2 \le Y1$
- Y3 ≤ Y2
- Y4 ≤ Y3
- $Y5 \le Y4$
- $Y6 \le Y5$

Settings should be chosen to match the capacitor bank Overvoltage capability curve as recommended by the manufacturer of the capacitor bank.

A status input may be programmed to inhibit the element.

3.6 Trip Circuit Supervision

Status inputs on the relay can be used to supervise trip circuits while the associated circuit breakers (CB) are either open or closed. Since the status inputs can be programmed to operate output contacts and LED's, alarms can be also generated from this feature. To use the function set 'Trip Cct n Fail' to ENABLED in the Reylogic Control Menu and then map the 'Trip Cct n Fail' settings in the Output Relay Menu and LED Menu as required.

See the Applications Guide for more details on the trip circuit supervision scheme.

3.7 VT Supervision

The VTS function is performed using an undervoltage element (27 VTS) and a current check element (50 VTS) on a phase by phase basis. Each element is usually set instantaneous. Fuse failure operates if both the current check element (50 VTS) and the undervoltage element (27 VTS) is picked up for the VTS Delay setting period., which indicates the capacitor bank is energised, and operates, which is set to 10 seconds by default. i.e. A sustained condition of rated current without rated volts indicates a fuse failure on a per phase basis.

4 Other Features

4.1 Metering

The metering feature provides real-time data available from the relay fascia in the 'Instruments Mode' or via the communications interface.

The following displays are available:

Reactor RMS currents (primary, secondary and nominal)

Reactor thermal overload status (0-99% - reactor thermal state, 100% - thermal overload operated)

Capacitor Bank currents (primary, secondary and nominal)

Capacitor Bank IDMTL status (0% - not picked up, 100% - Overcurrent operated)

Capacitor Bank voltages (primary, secondary and nominal)

Busbar voltage (single phase primary, secondary and nominal)

Status Inputs

Output Relays

Time and Date

4.2 Data Storage

4.2.1 General

Details of relay operation are recorded in three forms, namely Waveform records, Event records and Fault Data records. All records are time and date stamped with a resolution of one millisecond.

4.2.2 Time Synchronisation

Time and date can be set either via the relay fascia using appropriate commands in the System Config menu, via an IRIG-B input, via the communications interface or via a status input.

4.2.3 IRIG-B Time Synchronisation

A BNC connector on the relay rear provides an isolated IRIG-B GPS time synchronisation port. The IRIG-B input expects an modulated 3-6 Volt signal and provides time synchronisation to the nearest millisecond.

4.2.4 IEC 60870-5-103 Time Synchronisation

Relays connected individually or in a ring or star configuration can be directly time synchronised using the IEC 60870-5-103 global time synchronisation. This can be from a dedicated substation automation system or from Reydisp Evolution Communications Support Software.

4.2.5 Status Input Time Synchronisation

A status input may be used to synchronise the real time clock. To use this feature one of the status inputs must be assigned to the 'Clock Sync' feature in the Status Input Menu. Additionally 'Clock Sync' in the System Config Menu should be set to either 'Seconds' or to 'Minutes' as appropriate, depending on the period of the synchronising signals expected from the controlling device. If 'Seconds' are selected then energisation of the selected status input will result in the clock being synchronised to the nearest second with milliseconds set to zero. If 'Minutes' are selected then the clock is synchronised to the nearest minute with seconds and milliseconds set to zero.

4.2.6 Real Time Clock Time Synchronisation

In the absence of IRIG-B and IEC60870 time synchronisation the relay contains a year 2000 compatible real time clock circuit which maintains real time in the absence of DC supply.

4.2.7 Waveform Records.

The waveform record feature stores analogue and digital information for the voltage and current inputs, status inputs and output relays and LED's.

The waveforms are stored with a sampling resolution of 16 samples per cycle. The waveform recorder has the ability to store records for the previous four trip operations of the relay. These are labelled 1,2,3 and 4 with 1 being the most recent record. This however, can be altered using the 'Record Duration' setting, which offers the following selection:

- Four records of one second duration
- Two records of two second duration
- One record of four seconds duration

The waveform recorder will be triggered automatically when any protection element operates. It can also be triggered by any of the following means:

Via the 'Trigger Storage" status input signal.

Via the IEC870-5-103 communications interface.

The waveform recorder has a settable pre-fault triggering capability.

4.2.8 Event Records

The event recorder feature allows the time tagging of any change of state (Event) of the relay. As an event occurs the actual event condition is logged as a record along with a time and date stamp to a resolution of 1 millisecond. There is capacity for a maximum of 500 event records that can be stored in the relay and when the event buffer is full any new record will over-write the oldest. The following events are logged:

Change of state of Output Relays.

Change of state of Status Inputs.

Change of state of any of the control functions of the relay.

4.2.9 Fault Recording

The led flag configuration, date and time of the last five faults are recorded for display via the Fascia LCD.

Note : the real-time clock, waveform, fault and event records are all maintained, in the event of loss of auxiliary d.c. supply voltage, by the backup storage capacitor. This capacitor has the ability to maintain the charges on the real-time clock IC and the SRAM memory device for typically 2-3 weeks time duration. This time, however, is influenced by factors such as temperature and the age of the capacitor and could be shorter.

4.3 Communications

Two fibre optic communication ports, COM1 and COM 2b are provided at the rear of the relay, which give superior EMC performance. An isolated RS232 port, COM 2a is provided at the front of the relay for local access using a PC.

Communication is compatible with the IEC870-5-103 FT 1.2 transmission and application standards. For communication with the relay via a PC (personal computer) a user-friendly software package, REYDISP EVOLUTION [1], is available to allow transfer of the following:

Relay Settings

Waveform Records

Event Records

Fault Data Records

Instrument and meters

Control Functions

Communications operation is described in detail in Section 4 of this manual. For information about all aspects of the communications protocol used in the Modular II range of relays see [2].

4.4 Settings Groups

Depending up on the relay model then up to four alternative setting groups are provided, making it possible to edit one group while the relay protection algorithms operate using another 'active' group. An indication of which group is being viewed is given by the 'Gn' character in the top left of the display. Settings that do not indicate Gn in the top left corner of the LCD are common to all groups.

A change of group can be achieved either locally at the relay fascia or remotely via a communication interface command.

4.5 Password Feature

The programmable password feature enables the user to enter a 4 character alphabetical code to secure access to the relay settings. The relay is supplied with the password set to 'NONE', which means that the password feature is NOT ACTIVE. The password must be entered twice as a security measure against accident changes. Once a password has been entered then it will be required thereafter to change settings. It can, however, be de-activated by using the password to gain access and by resetting it back to 'NONE'. Again this must be entered twice to de-activate the security system.

As soon as the user attempts to change a setting the password is requested before any setting alterations are allowed. Once the password has been validated, the user is 'logged on' and any further changes can be made without re-entering the password. If no more changes are made within 1 hour then the user will automatically be 'logged off', re-enabling the password feature.

Note that the password validation screen also displays a numerical code. If the password is lost or forgotten, this code should be communicated to Siemens and the password can be retrieved.

If the code is 1966067850 then 4 spaces have been entered as the password. This is caused by ENTER being pressed three times on the Change Password setting screen. De-activate password by simply pressing enter for old password and then entering 'NONE' as the new password. Note this must be entered twice. When the password feature is de-activated then 'NOT ACTIVE' is displayed.

5 User Interface

The user interface is designed to provide a user-friendly method of entering settings and retrieving data from the relay. The relay fascia includes a 20 character by 2 line, backlit, liquid crystal display (LCD), 32 light emitting diodes (LED) and 5 push buttons.

5.1 Liquid Crystal Display

The liquid crystal display is used to present settings, instrumentation and fault data in a textual format on a 2 lines by 20-character interface.

5.2 Back light Control

To conserve power the display backlighting is turned off if no push buttons are pressed for 5 minutes. After an hour the whole display is de-activated. A setting within the "SYSTEM CONFIG MENU" allows the timeout to be adjusted from 5 minutes up to 60 minutes. This may also be set to OFF which means that the backlight is always on.

5.3 LED Indications

The following indications are provided:

Protection Healthy - Green LED.

This LED is solidly illuminated to indicate that DC volts have been applied to the relay and that the relay is operating correctly. If the internal relay watchdog detects a protection relay unhealthy condition then this LED will continuously flash.

Programmable - Red LED.

An LED MENU is provided to steer any output or energised status input to any LED.

5.4 Keypad

Five pushbuttons are used to control the functions of the relay. They are labelled $\hat{v} \Downarrow \Rightarrow \mathsf{ENTER}$ and CANCEL. Note that the \Rightarrow button is also labelled TEST/RESET.

When the relay front cover is in place only the \mathbb{A} and \Rightarrow buttons are accessible. This allows only read access to all the menu displays.

5.5 Relay Identifier

The Relay Identifier setting in the SYSTEM CONFIG MENU may be used to place a circuit identifier onto the relay fascia e.g. BOLDON SGT1. This information is also returned as part of the System Information command from Reydisp Evolution Communications Support Software.

5.6 Settings Mode

5.6.1 Settings Adjustment

The push-buttons on the fascia are used to display the relay settings, display the operating signals, e.g. primary currents, on the LCD and to reset flag indication on the LEDs.

4 READ DOWN / DECREMENT

In the Settings Display this push-button is used for scrolling down through a list of settings or signals. In Settings Modification mode it is used for selecting the next value of (or decreasing) the displayed setting or for deselecting a bit position in a particular control setting.

爺 READ UP /INCREMENT

In Settings Display or Signal Displays this push-button is used for scrolling back up through a list of settings or signals.

In Settings Modification mode it is used for selecting the previous value of (or increasing) the displayed setting or for selecting a bit position in a particular control setting.

ENTER

This push-button is used when the cover is removed to select between two modes of operation namely Settings Display or Settings Modification.

When this push-button is pressed and a relay setting is being displayed part of the display will flash to indicate that the setting being displayed can be modified by using the \hat{T} **INCREMENT** or \hat{P} **DECREMENT** keys on the facia.

When the required value of the setting has been established may be entered into the relay and acted upon by pressing the **ENTER** key again.

CANCEL

This push-button is used when the cover is removed to return the relay display to its initial status. It can be used to reject any alterations to the setting being modified provided the **ENTER** key has not been pressed to accept the changes.

⇒ TEST/RESET

This push-button is used to reset the fault indication on the LEDs on the fascia It also acts as a lamp test button because when pressed all of the LEDs will momentarily light up to indicate their correct operation.

The \clubsuit **READ DOWN** and **READ UP** push-buttons may then be used to scroll through the various signals.

5.6.2 Settings And Displays

The display menu structure is shown in Figure 3 - Menu Structure. This diagram shows the three main modes of display, which are the Settings Mode, Instruments Mode and the Fault Data Mode.

When the relay is first energised the user is presented with the following message,

This shows that the relay has been set with the standard factory default settings. If this message is displayed ENTER must be pressed to acknowledge this initial condition, the display will then indicate the relay software variant. e.g.

MSCDN-MP2B

Pressing the \Rightarrow **TEST/RESET** key on this display initiates an LED test. Pressing \oplus **READ DOWN** at this display allows access to the three display modes, which are accessed in turn by pressing the \Rightarrow **TEST/RESET** key.

The Settings Mode contains 11 setting sub-menu's. These hold all of the programmable settings of the relay in separate logical groups. The sub menus are accessed by pressing the key. This enters the sub menu and presents a list of all the settings within that sub menu. Pressing **READ DOWN** scrolls through the settings until after the last setting in the group the next sub menu is presented. Access to this group is via the same method as before. If a particular sub menu is not required to be viewed then pressing **READ DOWN** will skip past that particular menu and present the next one in the list. Note that all screens can be viewed even if the password is not known. The password only protects against unauthorised changes to settings.

While viewing an editable screen pressing the **ENTER** key allows the user to change the displayed data. A flashing character(s) will indicate the editable field. Pressing \textcircled **INCREMENT** or \textcircled **DECREMENT** scrolls through the available setting values or, pressing \Rightarrow **TEST/RESET** moves right through the edit fields. Note that all settings can be incremented or decremented using the \textcircled **INCREMENT** or \clubsuit **DECREMENT** keys and they all wraparound so that to go from a setting minimum value to the maximum value it is quicker to press the \clubsuit **DECREMENT** key, rather than scroll through every setting. Also, to facilitate quicker setting changes an acceleration feature is available which if \textcircled **INCREMENT** or \clubsuit **DECREMENT** are depressed and held, then the rate of scrolling through the setting values increases.

If **ESCAPE/CANCEL** is pressed during a setting change operation the original setting value is restored and the display is returned to the normal view mode.

If changes are made to the setting value then pressing **ENTER** disables the flashing character mode and displays the new setting value. This is immediately stored in non-volatile memory.

The next sections give a description of each setting in the relay. The actual setting ranges and default values can be found in the Relay Settings section of this manual.

5.7 Instruments Mode

In Instrument Mode metering points can be displayed to aid with commissioning, the following meters are available:-

- Reactor primary (kA), secondary (A) and nominal currents (xIn)
- Reactor thermal status for each phase (%)
- Capacitor Bank primary (kA), secondary (A) and nominal current (xIn)
- Backup overcurrent status for each phase (%)
- Capacitor bank primary (kV), secondary (V) and nominal voltage (V)
- Busbar primary (kV), secondary (V) and nominal voltage (xVn)
- Status inputs
- Output relays
- Time and Date

5.8 Fault Data Mode

In Fault Data Mode, the time and date of relay operations are recorded together with a record of the LED flag states.

6 Diagrams

Figure 3 - Menu Structure

Figure 4 - Modular II relay internal view

Figure 5 - Modular II relay rear terminal view

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2011/10. The list of revisions up to and including this issue is: Pre release

2011/10	References to 60Hz removed	
2010/02.	R 10 Document reformat due to rebrand	
12/10/2004	R9 AC Voltage Input ratings added	
	VT Supervision function added	
	Status input minimum operate current corrected	
	Corrected operating time variation over frequency	
28/02/2003	R8 IDMTL picks up at 105% of setting.	
	Three DTL elements are now available for Capacitor Unbalance	
18/02/2003	R7 IDMTL O/C & E/F minimum operate time corrected	
14/02/2003	R6 Operate time claims added for O/C and O/V elements	
13/02/2003	R5 Removed incorrect references to drop-off timers on the status inputs.	
10/02/2003	R4 All MP1 DO changed to \geq 80%	
	Cx Unbalance Accuracy changed to ± 5% of setting or ± 0.01 In	
21/01/2003	R3 Corrected element names	
	Added 59DT element	
27/11/2002	R2 Resistor thermal overload characteristics added	
	Resistor open circuit characteristics added	
24/10/2002	R1 Revision History Added.	

Software Revision History

00/00/0000	00041100000000	
23/03/2006	2621H80003R9c	

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

1	Introd	uction	. 3
2	Accur	acy Reference Conditions	.3
3	Modu	lar li Specification	. 3
	3.1	Environmental Withstand	. 3
	3.2	Auxiliary Energizing Quantity	. 5
	3.3	A.C Current Inputs	. 5
	3.4	A.C Voltage Inputs	. 5
	3.5	Rated Frequency	. 5
	3.6	Accuracy Influencing Factors	. 6
	3.7	Output Contacts	. 6
	3.8	Status inputs	. 6
	3.9	Auxiliary Timer Accuracy	. 7
	3.10	Indication	. 7
	3.11	Settings And Configuration	.7
	3.12	Recording	.7
	3.13	Communications	.7
	3.14	Irig-B Time Synchronisation	. 8
4	Protec	ction Elements	. 8
	4.1	Common Performance	. 8
	4.2	87/50-x-x Overall Differential	. 8
	4.3	C1/2 50-x Capacitor Unbalance	. 8
	4.4	50N Cap Bank Phase Unbalance	. 8
	4.5	R1/2 49 Resistor Thermal Overload	. 9
	4.6	50 Resistor Open Circuit	. 9
	4.7	49 Reactor Thermal Overload	. 9
	4.8	50 Backup Overcurrent	. 9
	4.9	50N Backup Earth Fault 1	0
	4.10	51 Backup Overcurrent,	0
	4.11	51N Derived Earth Fault1	11
	4.12	27 Undervoltage1	2
	4.13	59DT Definite Time Overvoltage 1	2
	4.14	59IT Inverse Time Overvoltage	13
	4.15	VT Supervision1	3

1 Introduction

The following document defines the technical and performance specification of the MSCDN Series relays. MSCDN relays are based upon the Siemens Modular II series of protection units.

Section 3 describes performance that is common to all Modular II protections.

Section 4 describes the performance of protection elements that may be fitted to MSCDN series relays. Therefore for any one MSCDN series model, only the performance for those elements described in the Description of Operation, as available in that model will be applicable.

Performance Data to:

IEC60255-6, IEC60255-6A and IEC60255-13.

Note:

Where performance is described as "X or Y", then performance is "whichever is greater", unless specified.

2 Accuracy Reference Conditions

General	IEC60255
	Parts 6, 6A & 13
Auxiliary Supply	Nominal
Frequency	50 Hz
Ambient Temperature	20°C

3 Modular li Specification

3.1 Environmental Withstand

Temperature - IEC 60068-2-1/2

Operating range	-10°C to +55°C
Storage range	-25°C to +70°C

Humidity - IEC 60068-2-3

	Operational test	56 days at 40°C and 95% RH

Transient Overvoltage -IEC 60255-5

Between all terminals and earth or between any	5kV 1.2/50µs 0.5J	
two independent circuits without damage or		
flashover		

Insulation - IEC 60255-5

Between all terminals and earth	2.0kV rms for 1 min
Between independent circuits	2.0kV rms for 1 min
Across normally open contacts	1.0kV rms for 1 min

High Frequency Disturbance -

IEC 60255-22-1 Class III

	Variation
2.5kV Common (Longitudinal) Mode	≤ 5%
1.0kV Series (Transverse) Mode	≤ 5%

Electrostatic Discharge -

IEC 60255-22-2 Class IV

	Variation
8kV contact discharge	\leq 5%

Conducted & Radiated Emissions -

ļ	EN 55022 Class A (IEC 60255-25)
	Conducted 0.15MHz – 30MHz
	Padiated 20MHz 1CHz

Radiated 30MHz – 1GHz

Conducted Immunity -(IEC 61000-4-6; IEC 60255-22-6)

	Variation
0.15MHz – 80MHz 10V rms 80% modulation	≤ 5%

Radiated Immunity -IEC60255-22-3 Class III

	Variation	
80MHz to 1000MHz, 10V/m	≤ 5%	
80% modulated		

Fast Transient - IEC 60255-22-4 Class IV

	Variation
4kV 5/50ns 2.5kHz repetitive	≤ 5%

Surge Impulse -

IEC 61000-4-5 Class IV; (IEC 60255-22-5)

	Variation
4KV Line-Earth (O/C Test voltage \pm 10%)	≤ 10
2KV Line-Line	

Vibration (Sinusoidal) –IEC 60255-21-1 Class 1

		Variation
Vibration response	0.5gn	≤ 5%
Vibration endurance	1.0gn	≤ 5%

Shock and Bump–IEC 60255-21-2 Class 1

		Variation
Shock response	5 gn 11ms	≤ 5%
Shock withstand	15 gn 11ms	≤ 5%
Bump test	10 gn 16ms	≤ 5%

Seismic – IEC 60255-21-3 Class 1

		Variation
Seismic Response	1gn	≤ 5%

Mechanical Classification

Durability	In excess of 10 ⁶ operations

3.2 Auxiliary Energizing Quantity

DC Power Supply

Nominal	Operating Range
30V	24V to 37.5V dc
50/110V	37.5V to 137.5V dc
220/250V	175V to 286V dc

Auxiliary DC Supply – IEC 60255-11

Allowable superimposed ac component	≤ 12% of DC voltage
Allowable breaks/dips in supply (collapse to zero from nominal voltage)	≤ 20ms

D.C. Burden

Quiescent (Typical)	15 Watts
Max	27 Watts

3.3 A.C Current Inputs

1 Amp and 5 Amp current inputs are both available on the rear terminal blocks for most functions except Capacitor Unbalance.

3.3.1 Thermal Withstand

Continuous and Limited Period Overload AC Current Inputs

Continuous		
for 10 minutes		
for 5 minutes		
for 3 minutes		
for 2 minutes		
for 1 second		
for 1 cycle		

3.3.2 A.C. Burden

A.C.	Burden
-	

1A tap	≤ 0.1 VA
5A tap	≤ 0.3 VA

NB. Burdens are measured at nominal rating.

3.4 A.C Voltage Inputs

.Tł	ner	mal	Wit	hsta	and	
Со	nt	inuo	ous	Ov	erlo	bad
<u>۸</u>	0	V/al				

ooninadad o fondaa	
AC Voltage	320Vrms (452Vpk)

3.4.1 A.C. Burden

A.C. Burden	
110Vrms	≤ 0.05 VA
63.5Vrms	≤ 0.01 VA

3.5 Rated Frequency

Frequency: 50Hz

Frequency

Range	47Hz to 52Hz
Setting variation	≤ 5 %
Operating time variation	≤ 5% or 5ms

3.6 Accuracy Influencing Factors

Temperature	
Ambient range	-10°C to +55°C
Variation over range	≤ 5%

3.7 Output Contacts

Output contacts functionality is fully programmable. The basic I/O module has 5 output contacts three of which are change over. Additional modules can be added with consequential increase in case size, to provide more contacts. These are added in-groups of eight up to a maximum of 29

3.7.1 Output Contact Performance

Contact rating to IEC 60255-0-2.

Carry continuously 5A ac or dc

Make and Carry

(limit $L/R \le 40$ ms and $V \le 300$ volts)

for 0.5 sec	20A ac or dc
for 0.2 sec	30A ac or dc

Break

(limit $\leq 5A \text{ or } \leq 300 \text{ volts}$)

Ac resistive	1250VA
Ac inductive	250VA @ PF ≤ 0.4
Dc resistive	75W
Dc inductive	30W @ L/R ≤ 40 ms
	50W @ L/R ≤ 10 ms

Minimum number of operations	1000 at maximum load
Minimum recommended load	0.5W, limits 10mA or 5V

3.8 Status inputs

Status Inputs functionality is fully programmable. The basic I/O module has 3 status inputs, additional modules can be added to provide more inputs, these inputs are added in-groups of eight up to a maximum of 27. A pickup timer is associated with each input and each input may be individually inverted where necessary. The pickup timer may be used to provide rejection at power system frequency.

Nominal Voltage	Operating Range
30 / 34	18V to 37.5V
48 / 54	37.5V to 60V
110 / 125	87.5V to 137.5V
220 / 250	175 to 280V

NB: the status input operating voltage does not have to be the same as the power supply voltage.

3.8.1 Status Input Performance

Minimum DC current for operation	48V 10mA 110V 2.25mA 220V 2.16mA
Reset/Operate Voltage Ratio	≥ 90%
Typical response time	< 5ms
Typical response time when programmed to	< 15ms
energise an output relay contact	
Minimum pulse duration	40ms

To meet the requirements of ESI 48-4 then 48V status inputs should be ordered together with external dropper resistors as follows:-

Status Input External Dropper Resistances

Nominal Voltage	Resistor Value (Wattage)
110 / 125V	2k7 ± 5% ; (2.5W)

220 / 250V 8k2 ± 5% ;	(6.0W)
-----------------------	--------

3.8.2 Status Input PU Timer

Each status input has an associated timer that can be programmed to give time-delayed pick-up. The pick-up timers can be set to 20ms to provide immunity to an AC input signal. Status inputs will then not respond to the following:

- 250V RMS 50Hz applied for two seconds through a 0.1µF capacitor.
- 500V RMS 50Hz applied between each terminal and earth.
- Discharge of a 10μF capacitor charged to maximum DC auxiliary supply voltage.

Accuracy Timing

ming	< ±1% or ±10ms

3.9 Auxiliary Timer Accuracy

Auxiliary Timers are those timers created in Reylogic, whose delay settings appear in the REYLOGIC ELEMENTS MENU

Accuracy

Setting	
0 ms	Instantaneous
> 0 ms	< +1% or +10ms

3.10 Indication

There are two types of LED indication, General and Protection Healthy.

Case Size	Number of LEDs
E8	16 General + Protection Healthy
E12	32 General + Protection Healthy
E16	32 General + Protection Healthy

All General LED indication is fully configurable by the user. All General indications are stored in non-volatile memory without the use of an internal backup battery.

3.11 Settings And Configuration

Settings changes may be done via the front panel user-friendly fascia keypad and LCD or via standard Reydisp Evolution windows software either locally or remotely. Settings changes are stored in EEPROM memory. Configuration changes may be achieved locally via the front serial port with a Windows based toolbox support package. Configuration changes and software upgrades are stored in Flash EPROM memory.

3.12 Recording

Up to 5 fault records may be stored within the relay, Fault records are accessible via the front panel showing the date and time of trips. New faults automatically overwrite the oldest fault record when they occur.

Waveform records are automatically stored whenever a trip is generated. Waveform recording can also be triggered by the status inputs. New waveform records automatically overwrite the oldest waveform record when they are triggered. The exact number and duration of waveform records, for any particular relay model, is available from the Relay Settings section of this Manual in the Data Storage Menu listing.

Up to 500 time tagged event records are stored within the relay. New events automatically overwrite the oldest event record when the 500 are used up.

3.13 Communications

IEC 60870-5-103 communications is standard on Reyrolle Modular II numerical product range. IEC 60870-5-103 has the advantage of built in time synchronisation of all devices, reduced communications overhead, high data security and compatibility with all of the major substation automation and control systems.

COM1 is a dedicated rear fibre optic serial port. COM2 can be auto-switched between rear fibre optic serial port and a front isolated RS232 serial port. IEC 60870-5-103 may be directed to use either COM1 or COM2.

All fibre optic ports can be star connected to a Sigma passive hub or simply daisy-chained in a loop-in loop-out configuration with other Reyrolle relays e.g. Argus, Delta, Ohmega, Tau. Up to 254 relays maybe connected to a Sigma network server to provide relay access over an Ethernet local area network (LAN).

3.14 Irig-B Time Synchronisation

The relay incorporates an IRIG-B time synchronisation port as standard for connection to a GPS time receiver. The input accepts an a.c. modulated input signal that should be in the range 3Vp-p or 6Vp-p.

4 Protection Elements

4.1 Common Performance

Disengaging Time

Disengaging Time 30ms	

Note: Output contacts have a minimum dwell time of 100ms, after which the disengaging time is as above.

4.2 87/50-x-x Overall Differential

Phase segregated High impedance Overall Differential scheme using external stabilizing resistors. Function is insensitive to third harmonic currents. Each element with individual Inhibit DO Delay timer (Auxiliary Timer) and following time delay.

Accuracy

Pickup	100% of setting \pm 5% or \pm 0.01 I _n
Reset	\geq 80% of I _s
Repeatability	± 2%
Transient Overreach	≤ 1 5%
Operate Time	± 1% or ± 10ms

Operating Time

Current Applied	Typical
2 x setting	≤ 1.5 cycle
4 x setting	≤ 1 cycle

4.3 C1/2 50-x Capacitor Unbalance

Phase segregated Capacitor Unbalance element, whose operate quantity is calculated from the ratio of capacitor load current and the measured spill current, followed by three identical instantaneous Overcurrent elements with following time delay

Accuracy

Pickup	100% of setting \pm 5% or \pm 0.02 I _n
Reset	\geq 80% of I _s
Repeatability	± 2%
Operate Time	± 1% or ± 10ms

Operating Time

4 x setting

Current Applied	Typical
2 x setting	1.5 cycles
4 x setting	1 cycle

4.4 50N Cap Bank Phase Unbalance

Derived phase unbalance quantity, from the sum of phase currents, applied to an instantaneous overcurrent element with following time delay.

Accuracy	
Pickup	100% of setting \pm 5% or \pm 0.01 I _n
Reset	\geq 80% of I _s
Repeatability	± 2%
Operate Time	± 1% or ± 10ms
Operating Time	
Current Applied	Typical
2 x setting	1.5 cycles

1 cycle

4.5 R1/2 49 Resistor Thermal Overload

Thermal overload element applied to each phase of each resistor independently.

Accuracy

Pickup	100% of setting \pm 5% or \pm 0.02 I _n
Reset	\geq 95% of I _s
Repeatability	± 2%
Operate Time	± 5% or ± 0.1s
Frequency Range	1 st , 2 nd …15 th Harmonic

Operating Time

Characteristic	Ranges
	Operate times are calculated from:
THERMAL IEC 60255-8	$t = \tau \times \ln \left\{ \frac{I^2 - I_P^2}{I^2 - (k \times I_B)^2} \right\}$ $\tau = \text{thermal time constant}$ I = measured current $I_P = \text{prior current}$ $I_B = \text{basic current}$ k = constant
τ Factor	1 to 10000 \triangle 0.5 seconds

4.6 50 Resistor Open Circuit

An instantaneous/delayed overcurrent element measures the difference in currents on each resistor on a phaseby-phase basis.

Accuracy

Pickup	100% of setting ± 5% or ± 0.02 In
Reset	\geq 95% of I _s
Repeatability	± 2%
Operate Time	± 1% or ± 10ms

Operating Time

Current Applied	Typical
2 x setting	2 cycles
4 x setting	1.5 cycle

4.7 49 Reactor Thermal Overload

Thermal overload element applied to each phase of the reactor independently.

Accuracy	
Pickup	100% of setting \pm 5% or \pm 0.02 I _n
Reset	\geq 95% of I _s
Repeatability	± 2%
Operate Time	± 5%
Frequency Range	1 st , 2 nd 15 th Harmonic

Operating Time

Characteristic	Ranges
THERMAL IEC 60255-8	Operate times are calculated from:
	$t = \tau \times \ln\left\{\frac{\mathbf{I}^2 - \mathbf{I}_{\mathrm{P}}^2}{\mathbf{I}^2 - (k \times \mathbf{I}_B)^2}\right\}$
	τ = thermal time constant
	I = measured current
	$I_P = prior current$
	I _B = basic current
	k = constant
τ Factor	1 to 1000 ∆ 0.5 minutes

4.8 50 Backup Overcurrent

Three phase definite time overcurrent element.

Accuracy

Pickup	100% of setting \pm 5% or \pm 0.02 l _n
Reset	\geq 95% of I _s
Repeatability	± 2%
Operate Time	± 1% or ± 10ms
Frequency Range	1 st , 2 nd 15 th Harmonic
Operating Time	
Current Applied	Typical
2 x setting	2 cycles
4 x setting	1.5 cycle

4.9 50N Backup Earth Fault

Definite time derived earth fault element.

Pickup	100% of setting \pm 5% or \pm 0.02 I _n	
Reset	\geq 95% of I _s	
Repeatability	± 2%	
Operate Time	± 1% or ± 10ms	
Frequency Range	1 st , 2 nd 15 th Harmonic	

Operating Time

Current Applied	Typical
2 x setting	2 cycles
4 x setting	1.5 cycle

4.10 51 Backup Overcurrent,

Three phase inverse time overcurrent element.

Accuracy

Pickup	105% of setting \pm 5% or \pm 0.02 I _n
Reset	\geq 95% of I _s
Repeatability	± 2%
Operate Time	± 5% or ± 40ms
Frequency Range	1 st , 2 nd …15 th Harmonic

Characteristic	Ranges	
	Operate times are calculated from:	
	$t = Tm \times \left[\frac{K}{\left[\frac{I}{I_s}\right]^{\alpha} - 1}\right]$	
IEC	I = fault current	
IDMTL	Is = current setting	
CURVES	Tm = time multiplier	
	NI: K = 0.14, α = 0.02	
	VI: K = 13.5, α = 1.0	
	EI: K = 80.0, α = 2.0	
	LTI: K = 120.0, α = 1.0	
Time Multiplier	0.025 to 1.600 ∆ 0.025 sec	
Reset	0.0 to 60.0 ∆ 1.0 sec	
ANSI IDMTL CURVES	Operate times are calculated from: $t = M \times \left[\frac{A}{\left[\frac{l}{l_s}\right]^p - 1} + B\right]$ I = fault current Is = current setting M = time multiplier MI: A = 0.0515, B = 0.114, P = 0.02 VI: A = 19.61, B = 0.491, P = 2.0 EI: A = 28.2, B = 0.1217, P = 2.0	
ANSI RESET CURVES	Operate times are calculated from: $t = M \times \left[\frac{R}{\left[\frac{I}{I_s}\right]^2 - 1}\right]$ I = fault current Is = current setting M = time multiplier MI: R = 4.85 VI: R = 21.6 EI: R = 29.1	

Operating Time

4.11 51N Derived Earth Fault

Inverse time derived earth fault element.

Accuracy	
Pickup	105% of setting \pm 5% or \pm 0.02 I _n
Reset	\geq 95% of I _s
Repeatability	± 2%
Operate Time	± 5% or ± 40ms
Frequency Range	1 st , 2 nd 15 th Harmonic

Characteristic	Ranges	
	Operate times are calculated from:	
	$t = Tm \times \left[\frac{K}{\left[\frac{I}{I_s}\right]^{\alpha} - 1}\right]$	
IEC	I = fault current	
IDMTL	Is = current setting	
CURVES	Tm = time multiplier	
	NI: K = 0.14, α = 0.02	
	VI: K = 13.5, α = 1.0	
	EI: K = 80.0, α = 2.0	
	LTI: K = 120.0, α = 1.0	
Time Multiplier	0.025 to 1.600 ∆ 0.025 sec	
Reset	0.0 to 60.0 ∆ 1.0 sec	
ANSI IDMTL CURVES	Operate times are calculated from: $t = M \times \left[\frac{A}{\left[\frac{I}{I_s}\right]^p - 1} + B\right]$ I = fault current Is = current setting M = time multiplier MI: A = 0.0515, B = 0.114, P = 0.02 VI: A = 19.61, B = 0.491, P = 2.0 EI: A = 28.2, B = 0.1217, P = 2.0	
ANSI RESET CURVES	Operate times are calculated from: $t = M \times \left[\frac{R}{\left[\frac{I}{I_s}\right]^2 - 1}\right]$ I = fault current Is = current setting M = time multiplier MI: R = 4.85 VI: R = 21.6 EI: R = 29.1	

Operating Time

4.12 27 Undervoltage

Single phase definite time undervoltage element. An under voltage guard element may be used to block this elements operation.

Ac	С	ur	асу

Pickup	100% of setting ± 0.1% or ± 0.1 V
Reset	\leq 100.5% of V _s (Adjustable)
Repeatability	± 0.1%
Operate Time	± 1% or ± 20ms
Frequency Range	1 st , 2 nd 15 th Harmonic
Operating Time	

Operating Time Operate Time

4.13 59DT Definite Time Overvoltage

Three phase definite time overvoltage element

Accuracy	
Pickup	100% of setting ± 0.1% or ± 0.1 V
Reset	\geq 99.5% of V _s
Repeatability	± 0.1%
Frequency Range	1 st , 2 nd …15 th Harmonic
Operating Time	
Operate Time	< 4 cycles

4.14 59IT Inverse Time Overvoltage

Three phase inverse time overvoltage element specified using seven user defined points on a curve.

Accuracy	
Pickup	\pm 0.1% of setting or \pm 0.1 V
Reset	\geq 99.5% of V _s
Repeatability	± 0.1%
Operate Time	± 5% or ± 0.1s
Frequency Range	1 st , 2 nd …15 th Harmonic

Operating	Time
-----------	------

Characteristic	Ranges	
CURVE	7 Point user defined inverse curve	
	X ₀ ,Y ₀	
	X ₆ ,Y ₆	
	X _i :=1.00xVn 2.00xVn	
	Y _i :=0.1 20000s	

4.15 VT Supervision

The VT supervision element operates when the 27 VTS and the 50 VTS element operate to indicate that the capacitor bank is energised but rated voltage has not been applied to the relay on a phase by phase basis.

4.15.1 27 VTS Undervoltage

Three phase definite time undervoltage element

Accuracy		
Pickup	100% of setting ± 0.1% or ± 0.1 V	
Reset	\geq 99.5% of V _s	
Repeatability	± 0.1%	

< 4 cycles

Operating Time Operate Time

el	lime			

4.15.2 50 VTS Current Check

Three phase definite time overcurrent check element

AccuracyPickup100% of setting $\pm 5\%$ or $\pm 0.02 I_n$ Reset $\geq 95\%$ of I_s Repeatability $\pm 2\%$ Operate Time $\pm 1\%$ or $\pm 10ms$

Operating Time

opolating this	
Current Applied	Typical
2 x setting	2 cycles
4 x setting	1.5 cycle

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02	R11 Document reformat due to rebrand
15/09/2004	R10 Corrected VTS Fuse Failure IEC event number
	Individual phase outputs for VTS removed to simplify relay setting. VTS
	Inhibit status input replaces 27 VTS & 50 VTS inputs.
25/08/2004	R9 VTS Alarm changed to simply VTS to signify that it is possible to alarm or trip from
	this function.
11/08/2004	R8 Voltage Transformer Supervision added, see pages 4, 6, 7, 9, 13, 17 and 18
19/02/2003	R7 50N and 51N steps should be in 0.05 steps and not 0.01 steps 50 minimum
	setting should be 0.1
11/02/2003	R6 Front page diagram moved to Description of Operation
05/02/2003	R5 Status inputs can now reset the Thermal elements to accelerate testing
19/12/2002	R4 U/V Guard now in output relay and led menu
18/12/2002	R3 Instruments for Primary, Secondary and Nominal values modified/added
	Allowed for up to 27 SI and 29 OR in various tables
	Inhibits added to tables and diagrams
13/11/2002	R2 59DT element added
23/10/2002	R1 Revision history added

Software Revision History

00/00/0000	00041100000000	
23/03/2006	2621H80003R9c	

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

1	MSCE	DN-MP2B Relay settings list	3
	1.1	System Config menu	3
	1.2	CT/VT Config menu	3
	1.3	VT Supervision menu	4
	1.4	Thermal menu	4
	1.5	Overcurrent menu	4
	1.6	Voltage menu	5
	1.7	Status input menu	6
	1.8	Reylogic control menu	7
	1.9	Reylogic element menu	7
	1.10	Output relay menu	7
	1.11	LED menu	8
	1.12	Data storage menu	9
	1.13	Communications menu	9
2	instru	ments	. 11
3	IEC 6	0870-5-103 Communications information	. 12
	3.1	IEC 60870-5-103 Semantics in monitor direction	. 12
	3.2	IEC 60870-5-103 Semantics in control direction	. 14
4	REYL	OGIC diagrams	. 15
5	Label	inserts	. 18

1 MSCDN-MP2B Relay Setting List

1.1 System Config Menu

Description	Range	Default	Setting
Active Group Selects which settings group is currently activated	1,24	1	
View/Edit Group Selects which settings group is currently being displayed	1,24	1	
Default Screens Timer Selects the time delay after which, if no key presses have been detected, the relay will begin to poll through any screens which have been selected as default instruments screens	OFF, 1,2,5,10,15,30,60 min	60 min	
Backlight timer Controls when the LCD backlight turns off	OFF, 1,2,5,10,15,30,60 min	5 Min	
Date	Date	1/1/1980	
Time	Time	00:00:00	
Clock Sync. From Status Real time clock may be synchronised using a status input (See Clock Sync. in Status Input Menu)	Disabled, Seconds,Minutes	Minutes	
Operating Mode To allow access to change configuration files using Reylogic Toolbox the relay must be placed Out Of Service.	Local, Remote, Local Or Remote, Out Of Service	Local Or Remote	
Change Password Allows a 4 character alpha code to be entered as the password. Note that the display shows a password dependant encrypted code on the second line of the display	AAAAZZZZ	"NONE" displayed as "NOT ACTIVE"	
Relay Identifier An alphanumeric string shown on the LCD normally used to identifier the circuit the relay is attached to or the relays purpose	Up to 16 characters	MSCDN-MP2B	

1.2 CT/VT Config Menu

Description	Range	Default	Setting
Reactor Input Selects whether 1 or 5 Amp terminals are being used for the reactor thermal overload function	1,5 A	1 A	
Reactor CT Ratio Reactor thermal overload function CT ratio to scale primary current instruments	1:0.25000:7	2000:1	
Overcurrent Input Selects whether 1 or 5 Amp terminals are being used for the cap bank backup overcurrent function	1,5 A	1 A	
Overcurrent CT Ratio Cap bank backup overcurrent function CT ratio to scale primary current instruments	1:0.25000:7	2000:1	
3P Nom Voltage Vn Selects the nominal voltage setting for the three phase voltage inputs	40,40.1160 V	63.5 V	
3P VT Ratio Three Phase VT ratio to scale primary voltage instruments	3300:401000000:160	132000:110	
3P VT Connection Selects whether phase to neutral or phase to phase voltages are connected at the three phase relay voltage input terminals to scale the primary line voltage instruments	Vpn, Vpp	Vpn	
1P Nom Voltage Vn Selects the nominal voltage setting for the single phase voltage input	40,40.1160 V	63.5 V	
1P VT Ratio Single Phase VT ratio to scale primary voltage instrument	3300:401000000:160	132000:110	
1P VT Connection Selects whether phase to neutral or a phase to phase voltage is connected at the single phase relay voltage input terminals to scale the primary line voltage instruments	Vpn, Vpp	Vpn	

1.3 VT Supervision Menu

Description	Range	Default	Setting
Gn 27 VTS Element ¹	Disabled, Enabled	Disabled	
Selects whether the VTS undervoltage element is enabled			
Gn 27 VTS Setting	0.10,0.111 xVn	0.75 xVn	
Voltage level below which it may be assumed that a fuse has failed or the bank is not energised.			
G <i>n</i> 27 VTS Delay ²	0,0.01864000 s	0 s	
Pickup delay			
Gn 50 VTS Element ¹	Disabled, Enabled	Disabled	
Selects whether the VTS current check element is enabled			
Gn 50 VTS Setting	0.01, 0.022.5 xln	0.8 xln	
Current level above which the capacitor bank is deemed to			
be energised.			
G <i>n</i> 50 VTS Delay ²	0,0.01…864000 s	0 s	
Pickup delay			

1) Both elements must be enabled to perform VTS functions, capacitor bank energised with undervoltage operated signifies VTS Operated.

2) Normally use instantaneous setting; see also VTS Timer setting in Reylogic Elements Menu.

1.4 Thermal Menu

Description	Range	Default	Setting
Gn 49 Thermal Overload Selects whether the thermal overload protection element is enabled	Disabled, Enabled	Disabled	
Gn 49 Overload Setting	0.1,0.23 xln	1.05 xln	
Gn 49 Time Constant	1.0,1.51000 min	10 min	
Gn 49 Capacity Alarm Selects whether thermal capacity alarm enabled	Disabled, 50,51100 %	Disabled	
49 Reset Therm State Control that allows thermal state to be manually reset	NO, YES	NO	

1.5 Overcurrent Menu

Description	Range	Default	Setting
Gn 51 Element Selects whether the IDMTL Overcurrent element is enabled	Disabled, Enabled	Disabled	
Gn 51 Setting Pickup level	0.05,0.102.5 xln	1.5 xln	
Gn 51 Char Selects characteristic curve or DTL operation	IEC-NI, IEC-VI, IEC-EI, IEC-LTI, ANSI-MI, ANSI- VI, ANSI-EI, DTL	IEC-NI	
Gn 51 Time Mult (IEC/ANSI) Time multiplier (applicable to IEC and ANSI curves but not DTL selection)	0.025, 0.0501.600	1.000	
Gn 51 Delay (DTL) Delay (applicable only when DTL is selected for characteristic)	INST, 0.01, 0.0220 <u>s</u>	<u>5 s</u>	
Gn 51 Reset Selects between an ANSI decaying reset characteristic or a definite time reset	(ANSI) Decaying, INST, 1,2,60 s	INST	
Gn 50 Element Selects whether the DTL Overcurrent element is enabled	Disabled, Enabled	Disabled	
Gn 50 Setting Pickup level	0.05, 0.1025 xln	20 xln	
Gn 50 Delay Pickup delay	0,0.01864000 s	0.01	
Gn 51N Element Selects whether the IDMTL derived Earth Fault element is enabled	Disabled, Enabled	Disabled	
Gn 51N Setting Pickup level	0.10,0.152.5 xln	1.0 xln	
Gn 51N Char Selects characteristic curve or DTL operation	IEC-NI, IEC-VI, IEC-EI, IEC-LTI, ANSI-MI, ANSI- VI, ANSI-EI, DTL	IEC-NI	
Gn 51N Time Mult (IEC/ANSI)	0.025, 0.0501.600	1.000	

Description	Range	Default	Setting
Time multiplier (applicable to IEC and ANSI curves but not DTL selection)			
Gn 51N Delay (DTL) Delay (applicable only when DTL is selected for characteristic)	INST, 0.01, 0.0220 <u>s</u>	5 s	
Gn 51N Reset Selects between an ANSI decaying reset characteristic or a definite time reset	(ANSI) Decaying, INST, 1,260 s	INST	
Gn 50N Element Selects whether the DTL derived Earth fault element is enabled	Disabled, Enabled	Disabled	
Gn 50N Setting Pickup level	0.10, 0.1525 xln	0.5 xln	
Gn 50N Delay Pickup delay	0,0.01864000 s	0.02	

1.6 Voltage Menu

Description	Range	Default	Setting
Gn U/V Guard Element	Disabled, Enabled	Enabled	
Selects whether the under voltage guard element which can be applied to both the under voltage element is enabled			
Gn U/V Guard Setting	0.01,0.020.5 xVn	0.1 xVn	
When the voltage drops below this level the element operates to provide a guard to prevent other elements operating			
Gn U/V Guard Delay	0,0.01864000 s	0 s	
Gn 27 Flement	Disabled Enabled	Disabled	
Selects whether the Undervoltage element is enabled		Disabled	
Gn 27 Setting	0.10,0.111 xVn	0.8 xVn	
Ondervoltage pickup level	0.0.1 80.%	01%	
Sets the pickup to dropoff thresholds e.g. 3% on Underlevel	0,0.100 /8	0.1 /0	
picks up below setting and drops off above 103% of setting	0.0.04 004000	0.4 -	
Gn 27 Delay Pickup delay	0,0.01864000 s	0.1 S	
Gn 59DT Element	Disabled, Enabled	Disabled	
Selects whether the INST/DTL overvoltage element is			
Gn 59DT Setting	1 000 1 005 2 x\/n	1.050 xVn	
Overvoltage pickup level	1.000,1.0002 x 11	1.000 XVII	
G <i>n</i> 59DT Delay	0,0.01…864000 s	0.2 s	
Overvoltage Pickup delay	Dischlad Enablad	Dischlad	
Selects whether the inverse time Overfluxing element is	Disabled, Ellabled	Disabled	
enabled		NOT.	
Gn 5911 Reset Selects between an INSTantaneous reset characteristic or a	INST, 1,2,1000 s	INST	
definite time reset			-
Gn 59IT X0 Pickup Setting	1.00,1.012.00	1.10 x	
Gn 59IT Y0 Point Setting	0102 20000 s	20000 s	
Initial user defined pickup delay	0.1,0.2200000	200000	
Gn 59IT X1 Point Setting	1.00,1.012.00	1.14 x	
Gn 59IT V1 Point Setting	0102 20000 s	1200 s	
Next user defined pickup delay	0.1,0.220000 3	1200 3	
Gn 59IT X2 Point Setting	1.00,1.012.00	1.16 x	
Gn 59IT Y2 Point Setting	0.1,0.220000 s	540 s	
Next user defined pickup delay		4.04	
Gn 5911 X3 Point Setting	1.00,1.012.00	1.21 x	
Gn 59IT Y3 Point Setting	0.1,0.220000 s	240 s	
Next user defined pickup delay	- ,		-
Gn 59IT X4 Point Setting	1.00,1.012.00	1.24 x	
Gn 59IT Y4 Point Setting	0.1,0.220000 s	120 s	
Gn 59IT X5 Point Setting	1 00 1 01 2 00	1 28 x	
Next user defined pickup level	1.00,1.012.00	1.20 /	
Gn 59IT Y5 Point Setting	0.1,0.220000 s	60 s	
Next user defined pickup delay	1 00 1 01 2 00	1 40 x	
	1.00,1.012.00	1.40 A	1

Description	Range	Default	Setting
Next user defined pickup level			
Gn 59IT Y6 Point Setting Next user defined pickup delay	0.1,0.220000 s	20 s	

1.7 Status Input Menu

Description	Range	Default	Setting
Aux I/P 1 Pickup Delay	0.000,0.005864000 s	0 s	
Delay on pickup of DC Status input 1	0.000.0.005 864000 a	0.0	
Aux I/P 2 Pickup Delay	0.000,0.005	0.5	
Aux I/P 3 Pickup Delay	0.000,0.005 864000 s	0.5	
Aux I/P 5 Pickup Delay	0.000,0.005 864000 s	0.5	
Aux I/P 6 Pickup Delay	0.000,0.005 864000 s	05	
Aux I/P 7 Pickup Delay	0.000,0.005 864000 s	0.5	
Aux I/P 8 Pickup Delay	0.000,0.005 864000 s	0.5	
Aux I/P 9 Pickup Delay	0.000,0.005 864000 s	03	
Aux I/P 10 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 11 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 12 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 13 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 14 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 15 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 16 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 17 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 18 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 19 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 20 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 21 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 22 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 23 Pickup Delay ¹	0.000,0.005 864000 s	03	
Aux I/P 24 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 25 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 26 Pickup Delay ¹	0.000,0.005 864000 s	05	
Aux I/P 27 Pickup Delay ¹	0.000,0.005 864000 s	05	
49 Inhibit	NONE 1 27^2	NONE	
Selects which inputs inhibit the 49 element		HONE	
49 Reset	NONE, 127 ²	NONE	
Selects which inputs reset the 49 element (useful during testing)			
50 Inhibit Selects which inputs inhibit the 50 element	NONE, 127 ²	NONE	
51 Inhibit Selects which inputs inhibit the 51 element	NONE, 127 ²	NONE	
50N Inhibit Selects which inputs inhibit the 50N element	NONE, 127 ²	NONE	
51N Inhibit Selects which inputs inhibit the 51N element	NONE, 127 ²	NONE	
U/V Guard Inhibit	NONE, 127 ²	NONE	
27 Inhibit Selects which inputs inhibit the 27 element	NONE, 127 ²	NONE	
59DT Inhibit Selects which inputs inhibit the 59DT element	NONE, 127 ²	NONE	
59IT Inhibit Selects which inputs inhibit the 59DT element	NONE, 127 ²	NONE	
VTS Inhibit Selects which inputs inhibit the VTS function	NONE, 127 ²	NONE	
Trip Circuit Fail	NONE, 127 ²	NONE	
normally also be selected as Inverted Inputs (see below)	NONE 1 27 ²	NONE	
Selects which inputs can trigger a waveform record			
Clock Sync.	NONE, 127 ²	NONE	

Description	Range	Default	Setting
Selects which input is used to synchronise the real time clock			
Inverted Inputs	NONE, 127 ²	NONE	
Selects which inputs pickup when voltage is removed, often used when monitoring trip circuits.			

1) Only when fitted.

2) 27 status inputs represents maximum configuration.

1.8 Reylogic Control Menu

Description	Range	Default	Setting
General Logic	Enable, Disable	Enable	
Selects whether the logic diagram is enabled, if disabled then			
no outputs will be driven.			

1.9 Reylogic Element Menu

Description	Range	Default	Setting
VTS Delay Delay before a Voltage Transformer Supervision is output when the capacitor bank is known to be energised yet one or more phases indicates an undervoltage condition. Note this must be set longer then the maximum sustained fault operate time to prove tVTS during a fault.	0,160000 ms	10000 ms	
Trip Cct Fail Pickup Delay Delay before a Trip Circuit Failure is alarmed on the loss of voltage to the trip circuit.	0,160000 ms	400 ms	

1.10 Output Relay Menu

Description	Range	Default	Setting
49 Alarm	NONE, 129 ¹	2	
Thermal capacity alarm operated		4.5	
49 I rip	NONE, 129	4,5	
	NONE 1 29 ¹	45	
DTL Overcurrent operated		.,.	
51	NONE, 129 ¹	4,5	
IDMTL Overcurrent operated		4.5	
DTL derived Earth Fault operated	NONE, 129	4,5	
51N	NONE. 129 ¹	4.5	
IDMTL derived Earth Fault operated		7 -	
U/V Guard	NONE, 129'	NONE	
Under voltage guard operated	NONE 1 20 ¹	2	
ZI DTL Undervoltage operated	NONE, 129	3	
59DT	NONE, 129 ¹	6	
DTL Overvoltage operated		-	
59IT	NONE, 129'	4,5	
IDMTL Overvoltage operated	NONE 1 20 ¹	NONE	
A VT fuse has failed	NONE, 129	NONE	
Phase A	NONE, 129 ¹	NONE	
A phase A element operated			
Phase B	NONE, 129'	NONE	
A phase B element operated	NONE 1 20 ¹	NONE	
A phase C element operated	NONE, 129	NONE	
General Starter	NONE, 129 ¹	NONE	
A starter element is picked up			
General Irip	NONE, 129	NONE	
functions!			
Trip Circuit Fail	NONE, 129 ¹	NONE	
A trip circuit has failed, look at status input Leds to find out which one			
New Data Stored	NONE, 129 ¹	NONE	
The waveform recorder has stored new information Note: this	, -		
is a puised output	NONE 1 20 ¹	NONE	
DC Status 1 has operated	INCINE, 123		
Aux I/P 2 Operated	NONE, 129 ¹	NONE	

Description	Range	Default	Setting
Aux I/P 3 Operated	NONE, 129 ¹	NONE	
Aux I/P 4 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 5 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 6 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 7 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 8 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 9 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 10 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 11 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 12 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 13 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 14 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 15 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 16 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 17 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 18 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 19 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 20 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 21 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 22 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 23 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 24 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 25 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 26 Operated ²	NONE, 129 ¹	NONE	
Aux I/P 27 Operated ²	NONE, 129 ¹	NONE	
Hand Reset Outputs Relays selected, as Hand Reset will remain latched until manually reset from front panel or via communications link or by removing DC Supply. By default relays are Self Resetting and will reset when the driving signal is removed.	NONE, 129 ¹	NONE	
Protection Healthy Relays selected are energised whilst relay self-monitoring does NOT detect any hardware or software errors and DC Supply is healthy. A changeover contact or normally closed contact may be used to generate Protection Defective from this output	NONE, 129 ¹	1	

1) 29 output relays represents maximum configuration.

2) Only when fitted.

1.11 LED Menu

Description	Range	Default	Setting
49 Alarm	NONE, 132	17	
Thermal capacity alarm operated	,		
49 Trip	NONE, 132	18	
Thermal capacity trip operated	,		
50	NONE, 132	19	
DTL Overcurrent operated	- , -	-	
51	NONE, 132	20	
IDMTL Overcurrent operated	,		
50N	NONE, 132	21	
DTL derived Earth Fault operated	,		
51N	NONE, 132	22	
IDMTL derived Earth Fault operated			
U/V Guard	NONE, 132	NONE	
Under voltage guard operated			
27	NONE, 132	5	
DTL Undervoltage operated			
59DT	NONE, 132	7	
DTL Overvoltage operated			
59IT	NONE, 132	6	
IDMTL Overvoltage operated			
VTS	NONE, 132	24	
A VT fuse has failed			
Phase A	NONE, 132	2	
A phase A element operated			

Description	Range	Default	Setting
Phase B	NONE, 132	3	
A phase B element operated	,		
Phase C	NONE, 132	4	
A phase C element operated	NONE 1 32	1	
A starter element is picked up	NONE, 1	1	
General Trip	NONE, 132	1	
An element has operated. Useful when testing individual			
Trip Circuit Fail	NONE 1 32	23	
A trip circuit has failed, look at status input Leds to find out			
which one Now Data Starad	NONE 1 22	NONE	
The waveform recorder has stored new information Note: this	NONE, 1	NONE	
is a pulsed output			
Aux I/P 1 Operated	NONE, 132	9	
Aux I/P 2 Operated	NONE 1 32	10	
Aux I/P 3 Operated	NONE 1 32	10	
Aux I/P 3 Operated	NONE 1 22	10	
Aux I/P 4 Operated	NONE, 1	12	
Aux I/P 5 Operated	NONE, 1	13	
Aux I/P 6 Operated	NONE, 132	14	
Aux I/P / Operated	NONE, 132	15	
Aux I/P 8 Operated	NONE, 132	16	
Aux I/P 9 Operated	NONE, 132	25	
Aux I/P 10 Operated	NONE, 132	26	-
Aux I/P 11 Operated	NONE, 132	27	
Aux I/P 12 Operated	NONE, 132	NONE	
Aux I/P 13 Operated ¹	NONE, 132	NONE	
Aux I/P 14 Operated ¹	NONE, 132	NONE	
Aux I/P 15 Operated ¹	NONE, 132	NONE	
Aux I/P 16 Operated ¹	NONE, 132	NONE	
Aux I/P 17 Operated ¹	NONE, 132	NONE	
Aux I/P 18 Operated ¹	NONE, 132	NONE	
Aux I/P 19 Operated ¹	NONE, 132	NONE	
Aux I/P 20 Operated ¹	NONE, 132	NONE	
Aux I/P 21 Operated ¹	NONE, 132	NONE	
Aux I/P 22 Operated ¹	NONE, 132	NONE	
Aux I/P 23 Operated ¹	NONE 1 32	NONE	
Aux I/P 24 Operated ¹	NONE 1 32	NONE	
Aux I/P 25 Operated ¹	NONE 1 32	NONE	
Aux I/P 26 Operated ¹	NONE 1 32	NONE	+
Aux I/P 27 Operated ¹	NONE 1 32	NONE	
Solf Posot I EDs			+
LEDs selected, as Self Reset will automatically reset when	INOINE, 1		
the driving signal is removed. By default all LEDs are Hand Reset and must be manually reset either levelly via the front			
fascia or remotely via communications.			1

1) Only when fitted.

1.12 Data Storage Menu

Description	Range	Default	Setting
Pre-Trigger Storage	1090 %	20 %	
Data Record Duration Waveform record length may be coordinated with the number of records that may be stored.	4 Rec x 1 Sec, 2 Rec x 2 Sec, 1 Rec x 4 Sec	4 Rec x 1 Sec	

1.13 Communications Menu

Description	Range	Default	Setting
Station Address	0254	0	
IEC 60870-5-103 Station Address			

Description	Range	Default	Setting
IEC870 On Port Selects which port to use for IEC 60870-5-103 communications	None, Com1, Com2, Auto	Com1	
Line Switch Time When IEC870 On Port is selected to Auto the communications ports are scanned for valid IEC 60870-5-103 communications frames. Once valid frames are detected the com port will remain selected. Subsequently if there are no valid frames received for the Line Switch Time period then the driver will assume the communications circuit has failed and will resume scanning the com ports.	1,2,60 s	30 s	
Com1 Baud Rate Sets the communications baud rate for com port 1 (Rear upper Fibre optic port)	75, 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200	19200	
Com1 Parity Selects whether parity information is used	Even, Odd, None	Even	
Com1 Line Idle Selects the communications line idle sense	Light Off, Light On	Light Off	
Com1 Data Echo Enables echoing of data from RX port to TX port when operating relays in a Fibre Optic ring configuration	Off, On	Off	
Com2 Baud Rate Sets the communications baud rate for com port 2 (Rear lower Fibre optic port AND Front Fascia RS232 port)	75, 110, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200	19200	
Com2 Parity Selects whether parity information is used	Even, Odd, None	None	
Com2 Line Idle Selects the communications line idle sense	Light Off, Light On	Light Off	
Com2 Data Echo Enables echoing of data from RX port to TX port when operating relays in a Fibre Optic ring configuration	Off, On	Off	
Com2 Direction Selects how Com2 is shared between the front fascia port and the rear fibre optic port. This allows interlocking to prevent remote access whilst an engineer is attached locally on site if IEC870 is on Com2 and Auto-detect is enabled	AUTO-DETECT, FRONT PORT, REAR PORT	AUTO-DETECT	

2 Instruments

INSTRUMENT	DESCRIPTION
[REACTOR METERS]	Start of reactor meters
> press down <	
Reactor Pr'y Current	Reactor primary currents
0.0 0.0 0.0 kA	
Reac'r Sec'y Current	Reactor secondary currents
Reactor Nom Currents	Poorter nominal ourrente
0.00 0.00 0.00 xIn	
Thermal Status 0.0 0.0 0.0 %	Reactor thermal status
[CAP BANK METERS]	Start of secondary meters
Primary Currents	Capacitor Bank primany currents
0.0 0.0 0.0 kA	
Secondary Currents 0.00 0.00 0.00 A	Capacitor Bank secondary currents
Nominal Currents	Capacitor Bank nominal currents
C 51 Status	Operation progress maters for (51) IDMTL elements, phases A. B. C.
0 0 0 0 %	and residual E/F
3P Primary Voltage 0.0 0.0 0.0 kV	Capacitor Bank primary voltages (three phase)
3P Secondary Voltage 0.0 0.0 0.0 V	Capacitor Bank secondary voltages (three phase)
3P Nominal Voltage 0.00 0.00 0.00 xVn	Capacitor Bank nominal voltages (three phase)
1P Primary Voltage 0.0 kV	Capacitor Bank or Busbar primary voltage (single phase)
1P Secondary Voltage 0.0 V	Capacitor Bank or Busbar secondary voltage (single phase)
1P Nominal Voltage 0.00 xVn	Capacitor Bank or Busbar nominal voltage (single phase)
[MISC METERS]	Start of miscellaneous meters
Status Inputs 1-16	Displays the state of DC status inputs 1 to 16 ¹
Status Inputs 17-27	Displays the state of DC status inputs 17 to 27 ¹
Output Relays 1-16	Displays the state of output relays 1 to 16 ²
Output Relays 17-29	Displays the state of output relays 17 to 29 ²
Time & Date 13/08/2002 10:16:11	Time and Date

1) Display is different when fewer status inputs are fitted

2) Display is different when fewer output relays are fitted

3 IEC 60870-5-103 Communications Information

3.1 IEC 60870-5-103 Semantics in monitor direction

FUN	INF	Description	GI	TYP	СОТ
60	1	IEC870 Active Com1	x	1	1,9
60	2	IEC870 Active Com2	х	1	1,9
60	3	Front Port OverRide	х	1	1,9
60	4	Remote Mode	х	1	1,9
60	5	Service Mode	х	1	1,9
60	6	Local Mode	х	1	1,9
60	7	Local & Remote	х	1	1,9
60	8	Real Time Clock Set	-	1	1
60	9	Real Time Clock Drift Corrected	-	1	1
60	10	Real Time Clock Not Synchronised	-	1	1
		Real Time Clock			
60	11	Synchronised	-	1	1
60	128	Cold Start	-	1	1
60	129	Warm Start	-	1	1
60	130	Re-Start	-	1	1
60	135	Irigger Storage	-	1	1
70	1	Status Input 1	X	1	1,9
70	2	Status Input 2	X	1	1,9
70	3	Status Input 3	X	1	1,9
70	4	Status Input 4	х	1	1,9
70	5	Status Input 5	X	1	1,9
70	6	Status Input 6	X	1	1,9
70	7	Status Input 7	X	1	1,9
70	8	Status Input 8	X	1	1,9
70	9	Status Input 9	X	1	1,9
70	10	Status Input 10	X	1	1,9
70	11	Status Input 11	X	1	1,9
70	12	Status Input 12	X	1	1,9
70	13	Status Input 13	X	1	1,9
70	14	Status Input 14	X	1	1,9
70	15	Status Input 15	X	1	1,9
70	16	Status Input 16	X	1	1,9
70	17	Status Input 17	X	1	1,9
70	18	Status Input 18	х	1	1,9
70	19	Status Input 19	X	1	1,9
70	20	Status Input 20	X	1	1,9
70	21	Status Input 21	X	1	1,9
70	22	Status Input 22	X	1	1,9
70	23	Status Input 23	x	1	1,9
70	24	Status Input 24	x	1	1,9
70	25	Status Input 25	x	1	1,9
70	26	Status Input 26	x	1	1,9
70	27	Status Input 27	х	1	1,9

FUN	INF	Description	GI	ТҮР	СОТ
80	1	Plant Control Relay 1	х	1	1,9
80	2	Plant Control Relay 2	х	1	1,9
80	3	Plant Control Relay 3	х	1	1,9
80	4	Plant Control Relay 4	х	1	1,9
80	5	Plant Control Relay 5	х	1	1,9
80	6	Plant Control Relay 6	х	1	1,9
80	7	Plant Control Relay 7	х	1	1,9
80	8	Plant Control Relay 8	х	1	1,9
80	9	Plant Control Relay 9	х	1	1,9
80	10	Plant Control Relay 10	х	1	1,9
80	11	Plant Control Relay 11	х	1	1,9
80	12	Plant Control Relay 12	х	1	1,9
80	13	Plant Control Relay 13	х	1	1,9
80	14	Plant Control Relay 14	х	1	1,9
80	15	Plant Control Relay 15	х	1	1,9
80	16	Plant Control Relay 16	х	1	1,9
80	17	Plant Control Relay 17	х	1	1,9
80	18	Plant Control Relay 18	х	1	1,9
80	19	Plant Control Relay 19	х	1	1,9
80	20	Plant Control Relay 20	х	1	1,9
80	21	Plant Control Relay 21	х	1	1,9
80	22	Plant Control Relay 22	х	1	1,9
80	23	Plant Control Relay 23	х	1	1,9
80	24	Plant Control Relay 24	х	1	1,9
80	25	Plant Control Relay 25	х	1	1,9
80	26	Plant Control Relay 26	х	1	1,9
80	27	Plant Control Relay 27	х	1	1,9
80	28	Plant Control Relay 28	х	1	1,9
80	29	Plant Control Relay 29	х	1	1,9
180	0	GI End	-	8	10
180	0	Time Synchronisation	-	6	8
180	2	Reset FCB	-	2	3
180	3	Reset CU	-	2	4
180	4	Start/Restart	-	2	5
180	5	Power On	-	2	5
180	22	Settings changed	-	1	1
180	23	Setting G1 selected	х	1	1,9
180	24	Setting G2 selected	х	1	1,9
180	25	Setting G3 selected	х	1	1,9
180	26	Setting G4 selected	х	1	1,9
180	38	VT Fuse Failure	х	1	1,9
180	36	Trip Circuit Fail	х	1	1,9
180	64	Start/Pick-up L1	x	2	1,9
180	65	Start/Pick-up L2	x	2	1,9
180	66	Start/Pick-up L3	x	2	1,9
180	67	Start/Pick-up N	x	2	1,9
180	68	General Trip	-	2	1
180	69	Trip L1	-	2	1

FUN	INF	Description	GI	ТҮР	СОТ
180	70	Trip L2	-	2	1
180	71	Trip L3	-	2	1
180	84	General Start/Pick-up	х	2	1,9
180	90	Trip I >	-	2	1
180	92	Trip In >	-	2	1
180	94	Thermal Alarm	-	2	1
180	95	Thermal Trip	-	2	1
180	100	Under Voltage	-	2	1
180	101	Over Voltage	-	2	1

3.2 IEC 60870-5-103 Semantics in control direction

FUN	INF	Description	COM	TYP	СОТ
180	0	GI Initiation		7	9
180	0	Time Synchronisation		6	8
180	19	LED reset	ON	20	20

4 Reylogic Diagrams

	THERMAL PROTECTION LOGIC	
49 Inhibit	A49_Inhibit_InputA49_Inhibit	
49 Reset	A49_Reset_Input A49_Reset	
	A49_Alarm1 IEC Event Code 180-94	
	A49_Alam2≥1A49_Alam	49 Alarm
	A49_Trip1 IEC Event Code 180-95	49 Trip
	A49_Trip3	10 mp
	OVERCURRENT AND EARTH FAULT LOGIC	
50 Inhibit	A50_Inhibit_InputA50_Inhibit	
	A50_Operated1	50
	A50_Operated2 ≥1 A50_Inp	50
51 Inhibit		
	A51 Operated1	n
	A51_Operated2 ≥1A51_Trip	51
	A51_Operated3	
	A50_Trip A50_51_Trip	
50in innidit	A50N_Inhibt_Input	
	A50N_Operated1A50N_Trip	50N
51N Inhibit	A51N_Inhibit_InputA51N_Inhibit	
	A51N_Operated1A51N_Trip	51N
	A50N_Trip	
	A51N_Trip	
	UNDER VOLTAGE GUARD LOGIC	
U/V Guard Innibit	UVDtlGuard_Inhibit_InputUVGuardTimerUVDtlGuard_Inhibit	
	UVDtlGuard_Operated121 UVGuardBlock	U/V Guard
	When CR opens I. I.W. Quard provides fast blocking of I.W. elements	
	When CB closes, UV Guard provides blocking of UV elements until Volts established	k
27 Inhibit	A27_Inhibit_Input	
	A27 Operated1	27
59DT Inhibit	A59DT Inhibit Inout	
	459DT Operated1 IFC Event Code 180-108	
	A59DT_Operated2≥1	59DT
	A59DT_Operated3	
591T Inhibit	A59IT_Inhibit_Input A59IT_Inhibit	
	A59IT_Operated1 IEC Event Code 180-109	FOIT
	A59I I_Operated2 ≥1A59I T_Trip	5911

5 Label Inserts

	MSCDN-MP2B	MSCDN-MP2B	
	R9c	R9c	
	Left	Right	
	27/04/2010 15:48:00	27/04/2010 15:48:00	
1	GENERAL STARTER	(49) THERMAL ALARM	17
2	PHASE A	(49) THERMAL TRIP	18
3	PHASE B	(50) O/C	19
4	PHASE C	(51) O/C	20
5	UNDERVOLTAGE (27)	(50N) DERIVED E/F	21
6	OVERVOLTAGE (59IT)	(51N) DERIVED E/F	22
7	OVERVOLTAGE (59DT)	TRIP CIRCUIT FAIL	23
8		VTS	24
9	AUX 1 I/P OPERATED	AUX 9 I/P OPERATED	25
10	AUX 2 I/P OPERATED	AUX 10 I/P OPERATED	26
11	AUX 3 I/P OPERATED	AUX 11 I/P OPERATED	27
12	AUX 4 I/P OPERATED		28
13	AUX 5 I/P OPERATED		29
14	AUX 6 I/P OPERATED		30
15	AUX 7 I/P OPERATED		31
16	AUX 8 I/P OPERATED		32

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02	R3 Document reformat due to rebrand
18/10/2004	R2 Sigma 5 references removed and replaced by Lantronix UDS-10
12/02/2003	R1 Revision history added

Software Revision History

23/03/2006 2621H80003R9c

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

1	ntroduction	4
2	Revdisp Evolution	4
3	Connection Specification And Relay Settings	4
	3.1 Recommended cable	4
	3.2 Connection Method	4
	3.3 Transmission Method	5
	3.4 Transmission Rate	5
	3.5 Line Idle Setting	5
	3.6 Parity Setting	5
	3.7 Address Setting	5
4	Nodems	5
	1.1 Connecting a modem to the relay(s)	5
	1.2 Setting the Remote Modem	6
	1.3 Connecting to the remote modem	6

Figures

Figure 1 - Basic Communications Configuration	7
Figure 2 - Basic Communications Configuration (Remote)	8
Figure 3 - Star Type Configuration (Using SIGMA-1 Multiplexer)	9
Figure 4 - Optical Ring Configuration (Using SIGMA-4 Fibre/RS232 Convertor)	9
Figure 5 – Direct Control System/Data Concentrator Configuration	10
Figure 6 – Automatic switchover remote to local control using the SIGMA-3	10
Figure 7 – LAN Network connectivity using a SIGMA-3 + Lantronix UDS-10 or equivalent	11

Glossary

Baud Rate Bit Bits Per Second (BPS)	See <i>bits per second</i> . The smallest measure of computer data. Measurement of data transmission speed.
Data Bits	A number of bits containing the data. Sent after the start bit.
Half-Duplex Asynchronous Communications	Communications in two directions, but only one at a time.
Hayes 'AT'	Modem command set developed by Hayes Microcomputer products, Inc.
IEC 60870-5-103	The International Electrotechnical Commission's Standard for communications with Protection Relays.
Master Station Modem	See <i>primary station</i> . MOdulator / DEModulator device for connecting computer equipment to a telephone line.
Parity	Method of error checking by counting the value of the bits in a sequence, and adding a parity bit to make the outcome, for example, even.
Parity Bit Primary Station PSTN	<i>Bit</i> used for implementing parity checking. Sent after the <i>data bits</i> . The device controlling the communication. Public Switched Telephone Network
RS232C	Serial Communications Standard. Electronic Industries Association Recommended Standard Number 232, Revision C.
Secondary Station Slave Station Start Bit	The device being communicated with. See <i>secondary station</i> . <i>Bit</i> (logical 0) sent to signify the start of a byte during data transmission.
Stop Bit	Bit (logical 1) sent to signify the end of a byte during data transmission

1 Introduction

All Reyrolle relays utilise the International Communications Standard for Protection Relays, IEC 60870-5-103. This document describes how to connect the IEC60870-5-103 compliant communications interface to a control system or interrogating computer.

To access the interface the user will need appropriate software within the control system or on the interrogating computer such as Reydisp Evolution.

The Reyrolle Argus 1 to Argus 8 range of protection relays have a single rear communications interface. The Reyrolle Modular II relay range which includes Ohmega, Delta, Duobias, Iota, Tau and MicroTaPP have two rear communications interfaces COM1 & COM2. COM2 is multiplexed with an RS232 port mounted upon the Fascia :-

- 1. COM1: this port is used for IEC60870-5-103 communications to a substation SCADA or integrated control system by default.
- 2. COM2: this port can also be used for IEC60870-5-103 communications to a substation SCADA or integrated control system. Note however that only one port can be mapped to the IEC60870-5-103 protocol at any one time. (The COMMS INTERFACE submenu includes a setting "IEC60870 on port", which maps the protocol to either COM1 or COM2). COM2 can also be accessed through an isolated RS232 (female 25-pin D-type) connector on the relay fascia. This provides facilities for access to the relay from a laptop or PC when commissioning or interrogating relays. A "COM2 Direction" setting is available which, when set to "AUTO-DETECT" automatically allows the front port to take control away from the rear port when a computer is plugged into the D-type connector.

2 Reydisp Evolution

Reydisp Evolution is a PC based software package providing capability for both local and remote communication to all Reyrolle Protection Relays . It provides features such as download of disturbance and event records, upload of relay settings, real-time monitoring of measurands and remote control of plant. Reydisp Evolution can be configured to connect to the relays using RS232, Fibre Optic, Modem or using Ethernet. When Ethernet is used the IEC 60870-5-103 protocol is transported using the TCP/IP protocol suite across a Local or Wide Area Network (LAN/WAN).

3 Connection Specification And Relay Settings

This section defines the connection medium as defined by IEC60870-5-103. Appendix A shows some typical communication connections.

3.1 Recommended cable

Two types of fibre-optic connectors are available with Reyrolle relays:

 Fibres terminated with 9mm SMA connectors. With this type of connector the recommended cable is 62.5 / 125µm glass fibre. This will allow a maximum transmission distance of 1.7km between Reyrolle relays. It will also be the maximum distance between the ring network and the fibre to RS232 converter.

Alternatively, 1.0mm polymer cable may be used to reduce cost. This will provide transmission distances of up to 5m between relays. Note that the distance from the transmit output of the RS232 / fibre optic converter to the receive input of the first Reyrolle relay should not be more than 6m.

 Fibres terminated with BFOC/2.5 (ST[®]) bayonet-style connectors. With this type of connector the recommended cable is also 62.5 / 125µm glass fibre. This offers superior performance over the SMA connectors in terms of better coupling to the fibre and therefore has lower losses.

No other types of cable are suitable for use with Reyrolle relays.

3.2 Connection Method

Reyrolle relays can be connected in either a Star or Ring fibre-optic communications network. If star connected then a passive fibre optic hub must be used. A lower cost option is the ring configuration where the Reyrolle relays are 'daisy chained.' That is, the transmit output of the first relay is connected to the receive input of the second relay, and so on until the ring is complete.

Communication to the ring may be achieved either locally in the substation or remotely via the Public Switched Telephone Network (PSTN). If remote communication is desired, then additional modem equipment must be installed.

3.3 Transmission Method

The transmission method is Half Duplex serial asynchronous transmission. In IEC 60870-5-103 the line idle state is defined as Light ON. This can alternatively be selected as Light OFF in the Communications Interface menu of the relay if required for use with alternate hardware (See Section 2.5).

3.4 Transmission Rate

Rates of 19200, 9600, 4800, 2400, 1200, 600, 300, 150, 110 and 75 bits per second (BPS) are provided. Only 19200 and 9600 BPS are standard in IEC 60870-5-103, the additional rates are provided for local or modem communications.

3.5 Line Idle Setting

The line idle setting can be set to be either ON or OFF and the setting must be compatible with the device connected to the relay. The IEC 60870-5-103 standard defines a line idle state of Light On. If the device the relay is connected to, does not have a compatible fibre-optic port then a suitable electrical to optical converter is required to connect it to a standard RS232C electrical interface. A suitable converter is the Sigma 4 type, which is available from Reyrolle Protection.

Alternative converters are the Reyrolle Dual RS232 Port (Sigma 3) or Reyrolle Passive Fibre-Optic Hub (Sigma 1).

- The Sigma 3 Dual RS232 port provides a fibre-optic interface to a relay and two RS232 ports. The RS232 system port is typically connected to a control system while the second port is a local port. When the local port is in use the system port is automatically disabled. The Sigma 3 has an internal link to switch between line idle Light ON or Light OFF. The default configuration is Light OFF.
- 2. The Sigma 1 Passive Fibre-Optic Hub provides fibre-optic interfaces for up to 29 relays. It has a fibre-optic port to the control system and multiple relay connections. Each of the 30 fibre-optic ports can be configured for either Light ON or Light OFF operation. Default for all is OFF.

3.6 Parity Setting

IEC60870-5-103 defines the method of transmission as using EVEN Parity. However, in some instances an alternative may be required. This option allows the parity to be set to NONE.

3.7 Address Setting

The address of the relay must be set to a value between 1 and 254 inclusive before any communication can take place. Setting the address to zero disables communications to the relay, although if it is in an optical ring it will still obey the Data Echo setting. All relays in an optical ring must have a unique address. Address 255 is reserved as a global broadcast address.

4 Modems

The communications interface has been designed to allow data transfer via modems. However, IEC60870-5-103 defines the data transfer protocol as an 11 bit format of 1 start, 1 stop, 8 data and 1 parity bit which is a mode most commercial modems do not support. High performance modems, for example, Sonix (now 3Com), Volante and MultiTech Systems MT series will support this mode but are expensive. For this reason a parity setting (see section 2.6) to allow use of easily available and relatively inexpensive commercial modems has been provided. The downside to using no parity is that the data security will be reduced slightly and the system will not be compatible with true IEC60870 control systems.

4.1 Connecting a modem to the relay(s)

The RS232C standard defines devices as being either Data Terminal Equipment (DTE) e.g. computers, or Data Communications Equipment (DCE) e.g. modems. To connect the modem to a relay requires a fibre-optic to electrical connector and a Null Terminal connector which switches various control lines. The fibre-optic converter is then connected to the relay in the following manner :

Fibre-Optic	Relay
Converter	Connection
Тх	Rx
Des	Tv

4.2 Setting the Remote Modem

Most modems support the basic Hayes 'AT' command format, though different manufacturers can use different commands for the same functions. In addition, some modems use DIP switches to set parameters while others are entirely software configured. Before applying the following settings it is necessary to return the modem to its factory default settings to ensure that it is in a known state.

The remote modem must be configured as Auto Answer, which will allow it to initiate communications with the relays. Auto answer usually requires 2 parameters to be set. One switches auto answer on and the other, the number of rings after which it will answer. The Data Terminal Ready (DTR) settings should be forced on which tells the modem that the device connected to it is ready to receive data. The parameters of the modem's RS232C port need to be set to match those set on the relay i.e. baud rate and parity to be the same as the settings on the relay, and number of data bits to be 8 and stop bits 1.

Note: although it may be possible to communicate with the modem at e.g. 19200bps, it may not be possible to transmit at this rate over the telephone system, which may be limited to 14400. A baud rate setting needs to be chosen which is compatible with the telephone system. As 14400 is not available in the relay, the next lowest rate, 9600, would have to be used.

Since the modem needs to be transparent, simply passing on the data sent from the controller to the device and vice versa, the error correction and buffering must be turned off. In addition if possible force the Data Carrier Detect (DCD) setting to ON as this control line will be used by the fibre-optic converter.

Finally these settings should be stored in the modem's memory for power on defaults.

4.3 Connecting to the remote modem

Once the remote modem is configured correctly it should be possible to dial into it using the standard configuration from a local PC. As the settings on the remote modem are fixed, the local modem should negotiate with it on connecting and choose suitable matching settings. If it does not, however, set the local modem to mimic the settings of the remote modem described above.

APPENDIX A - COMMUNICATION CONNECTIONS

Figures 1 to 6 illustrate a number of methods of connecting relays in communications networks.

Note that in the case of the optical ring configurations (Figure 4, Figure 6 and Figure 7), the Data Echo feature must be switched ON in the communications settings menu of the relay. In all other cases this setting should be set to OFF. In the data echo mode, everything that is received on the fibre optic receiver port is automatically (in hardware) re-transmitted from the transmitter port. This is made possible because of the communications standard IEC 60870-5-103 which operates half-duplex.

Figure 1 - Basic Communications Configuration

Figure 2 - Basic Communications Configuration (Remote)

Figure 3 - Star Type Configuration (Using SIGMA-1 Multiplexer)

Figure 4 - Optical Ring Configuration (Using SIGMA-4 Fibre/RS232 Convertor)

Figure 5 – Direct Control System/Data Concentrator Configuration

Figure 6 – Automatic switchover remote to local control using the SIGMA-3

When a portable PC is plugged into the front port of a SIGMA-3 then the remote system is automatically disconnected to ensure local control only. Alternatively on Modular II relays the portable PC may be plugged directly into the front fascia RS232 connection.

Figure 7 – LAN Network connectivity using a SIGMA-3 + Lantronix UDS-10 or equivalent

A SIGMA-3 unit may be used to as shown in Figure 7 to connect Argus and Modular II protection relays to a local area network via an Ethernet to RS232 convertor such as the Lantronix UDS-10 or similar device. SIGMA-3 units may be used on a per bay or per substation basis. They provide a single point of contact to the protection relays for monitoring and diagnostic purposes.

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02	Document reformat due to rebrand
18/10/2004	R2 VTS added.
11/02/2003	R1 First version.

Software Revision History

23/03/2006	2621H80003R9c	

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

Introduction Reactor Thermal Overload Protection Z.1 Fault Setting Principles Z.2 Setting Example Backup Overcurrent And Earth Fault Protection	
 2 Reactor Thermal Overload Protection	3
 2.1 Fault Setting Principles	3
2.2 Setting Example	3
3 Backup Overcurrent And Earth Fault Protection	5
	6
3.1 Fault Setting Principles	6
3.2 Setting Example	6
4 Overvoltage Protection	7
4.1 Fault Setting Principles	7
4.2 Setting Example	7
5 Voltage Transformer Supervision	8
5.1 Fuse Failure Setting Principles	8
5.2 Setting Example	8

Figures

Figure 1 – Exponential heating and cooling curves	. 3
Figure 2 - IEC60255-8 Cold Curve (tau in minutes)	. 4

1 Introduction

The MSCDN-MP2B relay provides wide bandwidth, true RMS phase-by-phase Reactor Thermal Overload Protection, Backup Overcurrent and Earth Fault Protection and Overvoltage Protection and is suitable for Capacitor Bank applications. Together with it's sister units MSCDN-MP1 and MP2A, this protection unit offers a complete solution for Main 1 and Main 2 protection of EHV/HV capacitor banks.

These notes give guidance on the application of the relay and the protection elements integrated in it, reference may be made to the Commissioning Chapter, which provides detailed set-up instructions.

2 Reactor Thermal Overload Protection

2.1 Fault Setting Principles

The operate time of the thermal elements is given by

$$t = \tau \times \ln \left\{ \frac{\mathbf{I}^2 - \mathbf{I}_{\mathrm{P}}^2}{\mathbf{I}^2 - (k \times \mathbf{I}_B)^2} \right\} \operatorname{sec} \dots (\mathsf{Eq. 1})$$

Where

 I_P = Previous steady state current level

 I_B = Basic current rating of reactor

k = Multiplier resulting in the overload pickup setting $k.I_{B}$ = I_{θ}

I = The measured reactor current

 τ = Thermal time constant

Figure 1 – Exponential heating and cooling curves

For the cooling curve:

For the heating curve:

$$\theta = \frac{I^2}{I_{\theta}^2} \cdot (1 - e^{-t/\tau}) \times 100\% \dots \text{(Eq.2)}$$

 $\theta = \theta_{\rm F} \cdot e^{-t/\tau}$ (Eq.3)

where: θ = thermal state at time t

 θ_{F} = final thermal state before disconnection of device

I = measured thermal current

 I_{θ} = thermal overload current setting (or k.I_B)

τ = thermal time constant

The final steady state thermal condition can be predicted for any steady state value of input current since when $t \gg \tau$,

$$\theta_F = \frac{I^2}{I_{\theta}^2} \times 100\% \dots \text{(Eq. 4)}$$

The thermal overload setting I_{θ} is expressed as a fraction of the relay nominal current and is equivalent to the factor k.I_B as defined in the IEC60255-8 thermal operating characteristics. It is the value of current above which 100% of thermal capacity will be reached after a period of time and it is therefore normally set slightly above the full load current of the protected device.

2.2 Setting Example

Reactor Thern	nal Characteristics
----------------------	---------------------

TIME IN MINUTES
Continuous
105
90
58
48
42
38

CT Characteristics	
Ratio	400/1

Alarm & Trip Requirements

Alarm level	105 %
Trip level ($I\theta = kIB$)	110 %

Now $I_B = 236/400 = 0.59$ amps

And $I_{\theta} = k \ x \ I_{B} = 1.1 \ x \ I_{B} = 1.1 \ x \ 0.59 = 0.649 \ Amps$

At an applied current of I = 389.4/400 = 0.9735 amps, the reactor maximum withstand time is t = 105 minutes. Using a safety margin of 50%, then

$$0.5 \times 105m = \tau \times \ln \left\{ \frac{0.9735^2}{0.9735^2 - 0.649^2} \right\}$$

Thus

$$\tau = \frac{52.5}{\ln\left(\frac{0.9477}{0.5265}\right)} \min = 89.32 \min$$

 \therefore τ = 90 minutes will be used to satisfy the 50% safety margin.

CURRENT IN AMPS	TIME IN MINS	RELAY	
		CHARACTERISTICS	
236	Continuous	Continuous	
389.4	105	52.90	
401.2	90	48.82	
424.8	58	42.08	
448.4	48	36.74	
460.2	42	34.47	
472	38	32.42	

Reactor Thermal Characteristics

Steady state thermal energy =

$$\theta_F = \frac{I^2}{I_{\theta}^2} \times 100\%$$

$$\theta_F = \frac{1^2}{1.1^2} \times 100\% = 82.64\%$$

Alarm level thermal state =

$$\theta_F = \frac{1^2}{1.05^2} \times 100\% = 90.7\%$$

Re-arranging equation 1 we get

$$t = -\tau \times \ln \left\{ 1 - \left[\frac{\theta \times I_{\theta}^{2}}{I^{2} \times 100} \right] \right\} \dots \text{ (Eq.5)}$$

The maximum operating time of the Thermal Alarm (i.e. from cold) will given by :-

t =	600.20	m
$I_{\theta} =$	1.1	
l =	1.05	
τ =	90	m
θ =	91	%

To achieve steady state thermal capacity of 82.6% (i.e. from cold) will given by :-

t =	213.32	m
$I_{\theta} =$	1.1	
l =	1.05	
τ =	90	m
θ =	82.6	%

Therefore the operating time from steady state at rated current of the Thermal Alarm would be t = 600m - 213m = 387m

Thermal Protection Settings

49 Overload Setting (using 1A i/p)	1.1 x 12/20 = 0.66 xln
49 Time Constant	90 minutes
49 Capacity Alarm	90 %

3 Backup Overcurrent And Earth Fault Protection

3.1 Fault Setting Principles

Typically Overcurrent protection is set to operate at 150% of rated current and Earth Fault protection is set to 20% of rated current, graded with a suitable time discriminating margin with other protections.

3.2 Setting Example

MVAR Rating (3P)	162.9
Voltage (L-L)	145kV
CT Ratio	600/1

Rated Current per phase = 162.9MVA/(145kV x $\sqrt{3}$) = 648.62 Amps

150% of Rated Current = 1.5 x 648.62/600 = 972.93/600 = 1.62 Amps

20% of Rated Current = 0.2 x 648.62/600 = 129.72/600 = 0.216 Amps

Phase Fault Setting	1.65
Earth Fault Setting	0.25

4 Overvoltage Protection

4.1 Fault Setting Principles

Two stages are available, a DTL stage for alarm purposes and an IDMTL characteristic for tripping purposes.

Typically the Alarm would be set to 105% of Capacitor Bank voltage rating and the Trip characteristic would be set to pick up at 110% of Capacitor Bank voltage rating.

4.2 Setting Example

Capacitor Overvoltage Withstand Characteristics

TIMES RATED VOLTAGE	TIME IN SECONDS	
1.2	1800	
1.25	300	
1.3	60	
1.4	15	
1.7	1	
2	0.3	
3	0.02	

Voltage (L-L)	145kV
VT Ratio	145kV/110V
VT Connection	Vpn

Rated Voltage Line to Ground = $145 \text{kV}/\sqrt{3}$

Vn applied to relay terminals = $(145000/\sqrt{3}) \times (110/145000) = 63.5$ Volts

Alarm pickup is at 105% rated voltage = $1.05 \times 63.5 = 66.68$ Volts

Trip pickup is at 110% of rated voltage = 1.1 x 63.5 = 69.86 Volts

Assuming a 50% safety margin on operate times then :-

Overvoltage Protection Settings

Vn	63.5V	
59DT Setting	1.05	
59DT Delay	0 s	
59IT X0 Pickup Setting	1.10 x	
59IT Y0 Point Setting	20000s (maximum)	
59IT X1 Pickup Setting	1.20 x	
59IT Y1 Point Setting	1800 x 0.5 = 900s	
59IT X2 Pickup Setting	1.25 x	
59IT Y2 Point Setting	300 x 0.5 = 150s	
59IT X3 Pickup Setting	1.3 x	
59IT Y3 Point Setting	$60 \times 0.5 = 30s$	
59IT X4 Pickup Setting	1.4 x	
59IT Y4 Point Setting	15 x 0.5 = 7.5s	
59IT X5 Pickup Setting	1.7 x	
59IT Y5 Point Setting	0.5s	
59IT X6 Pickup Setting	2 x	

59IT Y6 Point Setting 0.1

5 Voltage Transformer Supervision

5.1 Fuse Failure Setting Principles

The VTS uses an undervoltage element 27 VTS and a current check element 50 VTS. If both are operated for the VTS Delay period then VTS outputs are driven.

5.2 Setting Example

If the current applied per phase is greater than 0.80 of nominal current and the voltage on this phase is less than 0.75 of nominal voltage for 10 seconds then operate Output Relays 4 and 5 and Fascia LED 24.

|--|

27 VTS Element	Enabled
27 VTS Setting	0.75 xVn
27 VTS Delay	0.00s
50 VTS Element	Enabled
50 VTS Setting	0.80 xln
50 VTS Delay	0.00s

REYLOGIC ELEMENTS MENU			
VTS Delay	10000ms		
OUTPUT RELAY MENU MENU			
VTS	4,5		
LED MENU			
VTS	24		

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02	Document reformat due to rebrand	
18/10/2004	R2 ST fibre optics added	
10/02/2003	0/02/2003 R2 Adopted for MP1,MP2A and MP2B	
23/10/2002	R1 Revision History Added.	

Software Revision History

23/03/2006 2621H80003R9c

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

1	Unpacking, Storage And Handling	3
2	Recommended Mounting Position	3
3	Relay Dimensions	3
4	Fixings	4
5	Ancillary Equipment	4
6	Precautions	. 4
-		

1 Unpacking, Storage And Handling

On receipt, remove the relay from the container in which it was received and inspect it for obvious damage. It is recommended that the relay modules are not removed from the case. To prevent the possible ingress of dirt, the sealed polythene bag should not be opened until the relay is to be used.

If damage has been sustained a claim should immediately be made against the carrier, also inform Reyrolle Protection and the nearest Reyrolle agent, using the Defect Report Form in the Maintenance section of this manual.

When not required for immediate use, the relay should be returned to its original carton and stored in a clean, dry place.

The relay contains static sensitive devices, these devices are susceptible to damage due to static discharge and for this reason it is essential that the correct handling procedure is followed.

The relay's electronic circuits are protected from damage by static discharge when the relay is housed in its case. When individual modules are withdrawn from the case, static handling procedures should be observed.

- Before removing the module from its case the operator must first ensure that he is at the same potential as the relay by touching the case.
- The module must not be handled by any of the module terminals on the rear of the chassis.
- Modules must be packed for transport in an anti-static container.
- Ensure that anyone else handling the modules is at the same potential.

As there are no user serviceable parts in any module, there should be no requirement to remove any component parts.

If any component parts have been removed or tampered with, then the guarantee will be invalidated. Reyrolle Protection reserve the right to charge for any subsequent repairs.

2 Recommended Mounting Position

The relay uses a liquid display (LCD) which is used in programming and or operation. The LCD has a viewing angle of $\pm 45^{\circ}$ and is back lit. However, the best viewing position is at eye level, and this is particularly important when using the built-in instrumentation features.

The relay should be mounted to allow the operator the best access to the relay functions.

3 Relay Dimensions

The relay is supplied in an Epsilon case 16. Diagrams are provided elsewhere in this manual.

4 Fixings

4.1 Crimps

Amp Pidg or Plasti Grip Funnel entry ring tongue

Size	AMP Ref	Reyrolle Ref
0.25-1.6mm ²	342103	2109E11602
1.0-2.6mm ²	151758	2109E11264

4.2 Panel Fixing Screws

2-Kits - 2995G10046 each comprising:

- Screw M4 X10 2106F14010 – 4 off
- Lock Washes 2104F70040 – 4 off
- Nut M4 2103F11040 – 4 off

4.3 Communications

Two pairs of fibre optic ST^{TM} (BFOC/2.5) bayonet connectors (COM1 and COM2 rear), each made up of a transmitter and receiver), optimised for glass-fibre, are fitted to the rear of the case. (Refer to section 4 – Communications Interface).

25 Pin RS232 D Type connector on front of relay (COM2 front) accessible with front cover removed. Note this shares COM2 with COM2 Rear.

5 Ancillary Equipment

The relay can be interrogated locally or remotely by making connection to the fibre optic terminals on the rear of the relay or the RS232 port on the relay fascia. For local interrogation a portable PC is required. The PC must be capable of running Microsoft Windows Ver 3.1 or greater, and it must have a standard RS232 port. A standard data cable is required to connect from the PC to the 25 pin female D type connector on the front of the relay. For remote communications more specialised equipment is required. See the section on Communications for further information, and also see Report No. 690/0/01 on Relay Communications.

6 Precautions

When running fibre optic cable, the bending radius must not be more than 50mm.

If the fibre optic cables are anchored using cable ties, these ties must be hand tightened – under no circumstances should cable tie tension tools or cable tie pliers be used.

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02	Document reformat due to rebrand
18/10/2004	R2 VTS added
13/02/2003	R1 Revision History Added.
	Default Screen changed in 'Putting Into Service' Section

Software Revision History

23/03/2006 2621H80003R9c

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

1.	Introd	uction	3
2.	Safety	У	3
3.	Seque	ence Of Tests	3
4.	Test E	Equipment Required	3
5.	Insula	tion Resistance Test	4
6.	Powe	r Supply	5
7.	Progr	amming The Relay	5
	1.1	Setting by laptop PC	5
	1.2	Setting via relay fascia	5
8.	Secor	ndary Injection Tests	6
	1.3	Accuracy of Measurement	6
	1.4	Checking the thermal characteristic (49)	7
	1.5	Checking the IDMTL Overcurrent protection (51)	8
	1.6	Checking the INST/DTL Overcurrent protection (50)	8
	1.7	Checking the IDMTL Residual Earth Fault protection (51N)	9
	1.8	Checking the INST/DTL Residual Earth Fault protection (50N)	9
	1.9	Checking the Undervoltage Element (27)	10
	1.10	Checking the INST/ DTL Overvoltage Element (59DT)	10
	1.11	Checking the IDMTL Overvoltage Element (59IT)	10
	1.12	Checking the VTS Undervoltage and Current Check Elements (27 VTS & 50 VTS)	11
	1.13	Enabling Overcurrent and Residual Earth Fault Protection Elements	11
	1.14	Enabling Overvoltage and Undervoltage Elements	12
9.	Prima	ry Injection Tests	12
10	. Trippi	ng And Intertripping Tests	12
11	. Puttin	g In To Service	13

1. Introduction

These commissioning recommendations apply to the testing, putting into service and subsequent maintenance of MSCDN-MP2B (**Modular II)** series integrated capacitor bank protection.

A software program called Reydisp Evolution is available for download from the <u>www.siemens.com/energy</u> website. This allows access to settings, waveform records, fault and event records via relay communications with an IBM PC compatible computer.

Before starting the test procedures, the protection settings, the D.C. inputs, output relay configuration details must be available. This requires the following information: Reactor rating, values and tolerances and the V.T. and C.T. ratios.

It is recommended that use is made of all the tables provided so that a comprehensive record of the protection settings, as commissioned, is available for reference.

2. Safety

The commissioning and maintenance of this equipment should only be carried out by skilled personnel trained in protective relay maintenance and capable of observing all the safety precautions and Regulations appropriate to this type of equipment and also the associated primary plant.

Ensure that all test equipment and leads have been correctly maintained and are in good condition. It is recommended that all power supplies to test equipment be connected via a Residual Current Device (RCD) which should be located as close to the supply source as possible.

The choice of test instrument and test leads must be appropriate to the application. Fused instrument leads should be used when measurements of power sources are involved, since the selection of an inappropriate range on a multi-range instrument could lead to a dangerous flashover. Fused test leads should not be used where the measurement of a current transformer (C.T.) secondary current is involved, the failure or blowing of lead fuses or an internal instrument fuse or the operation of an instrument cut-out could cause the secondary winding of the C.T. to become an open circuit.

Open circuit secondary windings on energised current transformers are a hazard that can produce high voltages dangerous to personnel and damaging to equipment, test procedures must be devised so as to eliminate this risk.

3. Sequence Of Tests

If other equipment is to be tested at the same time as the MSCDN-MP2B, then such testing must be co-ordinated to avoid danger to personnel and equipment.

When cabling and wiring is complete, a comprehensive check of all terminations for tightness and compliance with the approved diagrams must be carried out. This can then be followed by the insulation resistance tests, which if satisfactory allows the wiring to be energised by either the appropriate supply or test supplies. When injection tests are completed satisfactorily, all remaining systems can be functionally tested before the primary circuit is energised. Some circuits may require further tests, e.g synchronising before being put on load.

4. Test Equipment Required

Various test sets designed for protection testing can be used to test the relay providing these provide the required current source with sinusoidal waveform within practical limits.

Test currents of the following range are required:

Thermal Overload	up to 3 xI _N
Overcurrent/Earth Fault	up to 2.5 xI _N

Where I_{N} is the relay nominal current rating being used.

The basic test equipment for primary and secondary injection test is as follows:

- a) A digital test set capable of at least 1 x three phase current injection and 1 x three phase voltage injection. The set must be capable of injecting at least 4 x the rated current on any of the relay inputs. For relay models with voltage inputs the amplifiers need to be reconfigured for voltage output.
- b) 1 500V insulation resistance test set.
- c) 1 Digital Multimeter
- d) Laptop PC to drive the test set if required and the Reydisp Evolution relay software.
- e) Primary test leads and injection set.

Suitable primary injection connectors and secondary injection test plugs and leads and a suitable a.c supply may be required and must be suitable for the site concerned.

When making secondary injection tests ensure that the test circuit is earthed at one point only.

5. Insulation Resistance Test

Before commencing to inspect the wiring take the following precautions:

Isolate the auxiliary supplies Remove the trip and inter-trip links

Check that the relay wiring is complete and that all terminal connections are tight and remove the C.T. earth link for the insulation resistance tests. **Ensure all links are reconnected following the tests.**

Measure the insulation resistance between each section of the wiring and the other sections connected together and to earth.

The sections comprise:

- a) C.T. secondary wiring connected to module AN1
- b) C.T. secondary wiring connected to module AN2
- c) V.T. secondary wiring connected to module AN3
- d) D.C. wiring connected to PSU and I/O modules, excluding power supply wiring to the PSU Module.

Before testing the D.C. wiring to earth, apply test connections between suitable points to short circuit each status input and series resistor to avoid possible damage to the opto-coupler should the wiring be earthed.

e) Test the power supply wiring to module PSU separately. Note that the D.C. +ve and D.C. -ve are each connected to earth by surge capacitors.

Record the results in Table 1 - Insulation Resistance Values.

Wiring Section	Resistance MegaOhms
AN1 C.T.'s to earth and other circuits	
AN2 C.T.'s to earth and other circuits	
AN3 C.T.'s to earth and other circuits	
D.C. Wiring to Earth and other circuits	
Power Supply wiring to earth	

Table 1 - Insulation Resistance Values

Insulation resistance values that are considered satisfactory must depend upon the amount of wiring involved. Generally, where a considerable amount of multi-core wiring is included, a reading of 2M ohms to 3M ohms is reasonable, For short lengths of wiring on a panel, higher readings should be expected. A reading of 1M ohm should not normally be considered satisfactory.

6. Power Supply

Remove the relay front cover to give access to all the fascia push buttons. Relays are provided with a power supply suitable for one of the standard auxiliary supply ratings of 30V, 48V, 110V, 220V D.C. Ensure that the actual supply is the same as the relay rating as marked on the fascia. Ensure the polarity of the supply is correct before energising the relay. Note, the minimum recommended fuse rating of the supply is 6 A slow-blow or 12 A HRC fuse. Note that the relay D.C. status inputs are current rated.

With the relay energised the green LED will provide a steady illumination, all the red LEDs should be out. Operate the TEST/RESET button and check that all the red LEDs are illuminated while the push is depressed.

7. Programming The Relay

The relay can either be set using the fascia buttons or from a laptop PC running Reydisp Evolution. Due to the number of possible settings, it is recommended that the laptop method be used for speed and ease of commissioning.

1.1 Setting by laptop PC

The relay is supplied with an RS232 port on the front of the fascia. This should be connected to a laptop using a 25 to 9 way RS232 cable. Reydisp Evolution should be installed – this will run on any MS Windows © operating system.

To access the relay communications port the Communications Settings in the relays must match the settings Communications settings selected in the Reydisp Evolution software.

To change the communications settings on the relay use the following procedure. On the relay fascia, keep tapping the \mathbb{Q} key until the COMMUNICATIONS MENU is displayed on the relay LCD. Press the TEST/RESET \Rightarrow once to bring up the STATION ADDRESS on the LCD. Press the ENTER button to alter the address to any desired number between 1 and 254. Set each relay to a unique number in the substation. The computer and relays address must be set identically. The relay address can be changed by tapping the \mathbb{Q} or \widehat{T} buttons. Press ENTER to register the selected number.

Continue to scroll down and set IEC 870 ON PORT to COM2 (front RS232 and bottom rear fibre ports are COMM 3 relay ports) and set AUTO DETECT to ON. The Auto Detect feature will automatically switch the active port to the front RS232 from the bottom rear fibre port when connection is made.

Ensure that the Communications baud rate and parity check settings on the Reydisp Evolution software running on laptop and Relay are the same. It is advisable to select the maximum baud rate on the relay and Reydisp Evolution, as this speeds up response times.

The communications setting can be changed in Reydisp Evolution by selecting: OPTIONS -> COMMUNICATIONS. This window displays the active port of the laptop. Select " OK" when changes are complete. Set the address on Reydisp Evolution to be the same as the relay station address.

Check the communications link by retrieving the relay settings (Relay->Settings->Get Settings)

Reydisp Evolution allows off line generation of relay setting by saving the relay Settings File and then downloading it. This saves time and possibly sore fingers if the relay type is a more advance model with many protection functions.

To download a Settings File On the laptop, select Relay->Settings->Send All Settings. Confirm the action and the program will inform whether the settings have been successfully entered into the relay. It is worth doing a few spot checks on the setting to be confident the correct settings are installed.

1.2 Setting via relay fascia

The relay can be set from the fascia by utilising the \hat{U} , $\hat{\Psi}$, \Rightarrow and ENTER buttons. Settings can be selected with the arrow buttons. Pressing ENTER when the setting to change is found will make the setting flash. This allows the \hat{U} and $\hat{\Psi}$ buttons to be used to alter the setting. Once the desired setting is selected the ENTER

pushbutton MUST be pressed for the relay to activate the selected setting. The setting will now stop flashing indicating this value will be utilised by the relay software.

The menu structure is shown in the "Description of Operation " section of this manual.

8. Secondary Injection Tests

Isolate the auxiliary D.C. supplies for alarm and tripping from the relay and remove the trip and intertrip links.

We recommend the use of an Omicron Test Set Type CMC256 (or CMC156 plus CMA156) as this has a program to input the settings and the thermal characteristic is automatically generated and tested. The Omicron set should be connected in accordance with the manufacturer's instructions. Using the OMICRON I2T Overcurrent characteristic with the parameters A =60 seconds, P = 2 and Q = 1 may be used if a full thermal curve is required. Pickup and Time constant should be as applied to relay.

Ensure that the reactor thermal elements are disabled at this stage to avoid confusing results.

Gn 49 Thermal Overload	Disabled, Enabled	Disabled
Selects whether the thermal overload protection element is		
enabled		

Ensure that the Overcurrent and earth fault elements are disabled at this stage to avoid confusing results.

Gn 51 Element	Disabled, Enabled	Disabled
Gn 50 Element Selects whether the DTL Overcurrent element is enabled	Disabled, Enabled	Disabled
Gn 51N Element Selects whether the IDMTL derived Earth Fault element is enabled	Disabled, Enabled	Disabled
Gn 50N Element Selects whether the DTL derived Earth fault element is enabled	Disabled, Enabled	Disabled

Ensure that the Undervoltage and Overvoltage elements are disabled at this stage to avoid confusing results.

Gn U/V Guard Element Selects whether the Undervoltage guard element is enabled	Disabled, Enabled	Disabled
Gn 27 Element Selects whether the Undervoltage element is enabled	Disabled, Enabled	Disabled
Gn 59DT Element Selects whether the INST/DTL overvoltage element is enabled	Disabled, Enabled	Disabled
Gn 59IT Char Selects whether the inverse time Overfluxing element is enabled	Disabled, Enabled	Disabled

Ensure that the VTS Undervoltage and current check elements are disabled at this stage to avoid confusing results.

Gn 27 VTS Element	Disabled, Enabled	Disabled
Selects whether the Undervoltage element is enabled		
Gn 50 VTS Element	Disabled, Enabled	Disabled
Selects whether the overcurrent check element is enabled		

1.3 Accuracy of Measurement

Inject all of the current inputs with nominal current in turn, and record the Relay Currents measured by the relays in the table below.

	Α	В	С
Reactor Currents			
Capacitor Currents			

Inject all of the capacitor bank voltage inputs with nominal volts in turn, and record the Relay Voltages measured by the relays in the table below.

	A	В	С
Capacitor Voltages			

Inject the busbar voltage input with nominal volts, and record the Relay Voltage measured by the relays in the table below.

	Vx
Busbar Voltage	

If any of the measurements are outside the stated tolerance (±5%) the relay must be sent back to the Quality Assurance Department for investigation.

1.4 Checking the thermal characteristic (49)

Enable the thermal elements.

Gn 49 Thermal Overload	Disabled, Enabled	Enabled	
Selects whether the thermal overload protection			
element is enabled			

When testing the thermal characteristic, the status of each thermal element can be displayed on the LCD by changing to the INSTRUMENTS mode and scrolling down to [REACTOR METERS]. The Instruments to view to help check the relay thermal characteristics are

INSTRUMENT	DESCRIPTION
[REACTOR METERS]	Start of reactor meters
> press down <	
Reactor Pr'y Current	Reactor primary currents
0.0 0.0 0.0 kA	
Reac'r Sec'y Current	Reactor secondary currents
0.00 0.00 0.00 A	
Reactor Nom Currents	Reactor nominal currents
0.00 0.00 0.00 xln	
Thermal Status	Reactor thermal status
0.0 0.0 0.0 %	

The thermal status meters show the current thermal state of the elements. When applying secondary injection current these values will change to show how the resistor model is warming up. Sufficient time must be allowed between tests to allow the thermal model to reset otherwise operate times may be misleading. To accelerate testing of the thermal elements it is possible to reset the thermal state between tests via a setting via the FASCIA LCD:

49 Reset Therm State	NO, YES
Control that allows thermal state to be manually reset	

Selecting YES will reset the thermal.

Alternatively it is possible to program a status input to reset the thermal state, which may be conveniently operated from a spare thermal trip contact if a full characteristic is required.

Applying rated current to each resistor should result in the thermal state of the element settling to the following level:

$$\theta_F = \frac{I^2}{I_{\theta}^2} \times 100\%$$

$$\label{eq:lambda} \begin{split} I &= applied \ current \\ I_{\theta} &= thermal \ overload \ current \ setting \ (or \ k.I_B) \end{split}$$

Allow sufficient time for the reading to remain steady. The PU test is done by injecting sufficient current to achieve 100% thermal capacity used. To speed up the response, the thermal time constant should be temporarily set to its minimum value of 1 minute. The timing test should use the Thermal Time Constant to be used in practice, but the a high multiple of pickup can be used to speed up the test. The time to trip may be calculated from the thermal equation found is the Applications Section.

	A	В	С	
Current Applied				Amps
Final thermal state				%
PU Test	А	А	А	Th. Capacity=100%
Timing Test; Tau TC = Calculated Time= _s Current Injected				(s)

Check that the Nominal Currents on the Instruments display value are at an expected value.

Increase the current until the element operates and verify the operation of all programmed Trip and Alarm contacts and the LED indication.

1.5 Checking the IDMTL Overcurrent protection (51)

Enable the capacitor bank IDMTL Overcurrent protection elements.

Gn 51 Element	Disabled, Enabled	Enabled	
Selects whether the IDMTL Overcurrent element is enabled			

Apply a current to each phase in turn and check and record the pickup level. For convenience LED 1 is normally programmed to be self – resetting as a General Starter which picks up when any starter operates. Verify the operation of all programmed Trip and Alarm contacts and the LED indication.

	A	В	С
Pickup Current			

Apply a current equivalent to 2x setting to each phase in turn and check and record the operating time.

Current Applied (A)	A (Secs)	B (Secs)	C (Secs)

Temporarily disable the element to simplify testing of other Overcurrent elements.

Gn 51 Element	Disabled, Enabled	Disabled	
Selects whether the IDMTL Overcurrent element is			
enabled			

1.6 Checking the INST/DTL Overcurrent protection (50)

Enable the capacitor bank INST/DTL Overcurrent protection elements.

Gn 50 Element	Disabled, Enabled	Enabled	
Selects whether the DTL Overcurrent element is enabled			

Apply a current to each phase in turn and check and record the pickup level. Verify the operation of all programmed Trip and Alarm contacts and the LED indication.

	Α	В	С
Pickup Current			

Apply a current equivalent to 2x setting to each phase in turn and check and record the operating time.

Current Applied	A (Secs)	B (Secs)	C (Secs)

Temporarily disable the element to simplify testing of other Overcurrent elements.

Gn 50 Element Disabled, Enabled Disabled Disabled	

1.7 Checking the IDMTL Residual Earth Fault protection (51N)

Enable the capacitor bank IDMTL Residual Earth Fault protection element.

Gn 51N Element	Disabled, Enabled	Enabled	
Selects whether the IDMTL derived Earth Fault			

Apply a current to each phase in turn and check and record the pickup level. Verify the operation of all programmed Trip and Alarm contacts and the LED indication.

	А	В	C
Pickup Current			

Apply a current equivalent to 2x setting to each phase in turn and check and record the operating time.

Current Applied	A (Secs)	B (Secs)	C (Secs)

Temporarily disable the element to simplify testing of other Overcurrent elements.

Gn 51N Element	Disabled, Enabled	Disabled	
Selects whether the IDMTL derived Earth Fault			
element is enabled			

1.8 Checking the INST/DTL Residual Earth Fault protection (50N)

Enable the capacitor bank INST/DTL Residual Earth Fault protection element.

Gn 50N Element	Disabled, Enabled	Enabled	
Selects whether the DTL derived Earth fault			
element is enabled			

Apply a current to each phase in turn and check and record the pickup level. Verify the operation of all programmed Trip and Alarm contacts and the LED indication.

	А	В	С
Pickup Current			

Apply a current equivalent to 2x setting to each phase in turn and check and record the operating time.

Current Applied	A (Secs)	B (Secs)	C (Secs)

Temporarily disable the element to simplify testing of other Overcurrent elements.

Gn 50N Element	Disabled, Enabled	Disabled	
Selects whether the DTL derived Earth fault			
element is enabled			

1.9 Checking the Undervoltage Element (27)

Disable the Undervoltage guard element.

Gn U/V Guard Element	Disabled, Enabled	Disabled	
Selects whether the			
Undervoltage guard element			
which can be applied to both			
the Undervoltage element is			
enabled			

Enable the capacitor bank DTL Undervoltage protection element.

Gn 27 Element	Disabled, Enabled	Enabled
Selects whether the Undervoltage element is enabled		

Apply rated voltage to the Undervoltage input. Reduce the voltage check and record the operate level. Verify the operation of all programmed Trip and Alarm contacts and the LED indication.

	A	В	С
Voltage			

Note

When the Undervoltage guard element is enabled, the Undervoltage protection element will be blocked from operating for a complete loss of volts such as when a circuit breaker opens. As an alternative it is possible to block the operation of the Undervoltage Protection element by using a status input from the CB auxiliary contacts. If this behaviour is not desired the Undervoltage Guard element should be left disabled.

Temporarily disable the element to simplify testing of the other voltage elements.

Gn 27 Element	Disabled, Enabled	Disabled	
Selects whether the Undervoltage element is			
enabled			

1.10 Checking the INST/ DTL Overvoltage Element (59DT)

Enable the capacitor bank INST/DTL Overvoltage protection element.

Gn 59DT Element	Disabled, Enabled	Enabled
Selects whether the INST/DTL overvoltage	2.000.000, 2.100.000	
element is enabled		

Apply a voltage to each phase in turn and check and record the pickup level. Verify the operation of all programmed Trip and Alarm contacts and the LED indication.

	А	В	С
Pickup Voltage			

Apply a voltage equivalent to 1.2x setting to each phase in turn and check and record the operating time.

Voltage Applied	A (Secs)	B (Secs)	C (Secs)

Temporarily disable the element to simplify testing of the other voltage elements.

Gn 59DT Element	Disabled, Enabled	Disabled	
Selects whether the INST/DTL overvoltage		l	
element is enabled			

1.11 Checking the IDMTL Overvoltage Element (59IT)

Enable the capacitor bank IDMTL Overvoltage protection element.

Gn 5911 Char Disabled, Enabled Enabled
--

Selects whether the inverse time	
Overfluxing element is enabled	

Apply a voltage to each phase in turn and check and record the pickup level. Verify the operation of all programmed Trip and Alarm contacts and the LED indication.

	А	В	С
Pickup Voltage			

Apply a voltage equivalent to 1.2x setting to each phase in turn and check and record the operating time.

Voltage Applied	A (Secs)	B (Secs)	C (Secs)

Temporarily disable the element to simplify testing of the other voltage elements.

G <i>n</i> 59IT Char	Disabled, Enabled	Disabled	
Selects whether the inverse time Overfluxing element is enabled			

1.12 Checking the VTS Undervoltage and Current Check Elements (27 VTS & 50 VTS)

Enable the capacitor bank VT supervision undervoltage and current check elements. Note that both elements must be enabled for the VTS to operate.

Gn 27 VTS Element Selects whether the Undervoltage element is enabled	Disabled, Enabled	Enabled
Gn 50 VTS Element Selects whether the overcurrent check element is enabled	Disabled, Enabled	Enabled

Apply no voltage at this time. Apply current in turn to each phase and check and record the level at which the VTS operates.

	А	В	C
Current			

Apply nominal current and voltage to each phase in turn. Reduce voltage in phase and check and record the level at which the VTS operates.

	Α	В	С
Voltage			

1.13 Enabling Overcurrent and Residual Earth Fault Protection Elements

When all tests are complete re-enable Overcurrent and Residual Earth Fault elements.

Gn 51 Element Selects whether the IDMTL Overcurrent element is enabled	Disabled, Enabled	Enabled
Gn 50 Element Selects whether the DTL Overcurrent element is enabled	Disabled, Enabled	Enabled
Gn 51N Element Selects whether the IDMTL derived Earth Fault element is enabled	Disabled, Enabled	Enabled
Gn 50N Element Selects whether the DTL derived Earth fault element is enabled	Disabled, Enabled	Enabled

1.14 Enabling Overvoltage and Undervoltage Elements

Gn U/V Guard Element Selects whether the Undervoltage guard element which can be applied to both the Undervoltage element is enabled	Disabled, Enabled	Enabled
Gn 27 Element Selects whether the Undervoltage element is enabled	Disabled, Enabled	Enabled
Gn 59DT Element Selects whether the INST/DTL overvoltage element is enabled	Disabled, Enabled	Enabled
Gn 59IT Char Selects whether the inverse time Overfluxing element is enabled	Disabled, Enabled	Enabled

When all tests are complete re-enable Overvoltage and undervoltage elements as required.

9. Primary Injection Tests

Primary injection tests are required to prove the CT ratio and secondary connections to the relay. A polarity test is NOT required for this relay.

Inject using a primary injection test set and record and verify the expected levels on the instruments on the relay.

Reactor Current	А	В	С
	Pri,Sec,Nom	Pri,Sec,Nom	Pri,Sec,Nom
Capactitor Current	Α	В	С
-	Pri,Sec,Nom	Pri,Sec,Nom	Pri,Sec,Nom

Primary injection tests are required to prove the VT ratio and secondary connections to the relay. A polarity test is NOT required for this relay.

Inject using a primary injection test set and record and verify the expected levels on the instruments on the relay.

	Α	В	С
	Pri,Sec,Nom	Pri,Sec,Nom	Pri,Sec,Nom
Capacitor Voltages (3P)			

Inject using a primary injection test set and record and verify the expected levels on the instruments on the relay.

	Vx
	Pri,Sec,Nom
Busbar Voltage	
(1P)	

10. Tripping And Intertripping Tests

Re-connect the auxiliary d.c. supplies for trip and alarm operations and insert the Trip and InterTrip links.

Simulate the operation of each external contact that initiates a status input and in each case check that appropriate LED illuminates and that the correct tripping, intertripping and alarm initiation occurs.

Disconnect the d.c. power supply to the MSCDN-MP2B relay and check for correct PROTECTION INOPERATIVE alarm. Operate the thermal protection and the open circuit protections in turn by primary or secondary injection and check that the correct tripping, indication occurs.

11. Putting In To Service

Ensure that: The trip supply is connected. All the RED LEDs are off The GREEN LED is ON steady.

Ensure that all earth links, trip links and inter-trip links are in their normal operational positions.

Ensure that the thermal states of the reactor thermal protections are reset

49 Reset Therm State	NO, YES
Control that allows thermal state to be manually reset	

Selecting YES will reset the thermal state for the reactor.

Operate the Cancel PUSH BUTTON

Check that the LCD displays the screen below, or the 'Relay Identifier' set in the SYSTEM CONFIG MENU.

MSCDN-MP2B	

Replace the cover. The above reading will remain for approximately 1 hour then the screen will go blank.

Ensure that all settings are correctly applied and all required elements enabled.

As a final check using Reydisp Evolution, download all settings to PC and verify that these are correct. Downloaded settings may be saved to disk and a hard copy printed as required.

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02	Document reformat due to rebrand
21/02/2003	R1 First version

Software Revision History

23/03/2006	2621H80003R9c	

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Contents

1	Maintenance Instructions	3
2	Defect Report Form	4

1 Maintenance Instructions

The MSCDN-MP1, MP2A and MP2B relays are maintenance free relays, with no user serviceable parts. During the life of the relays they should be checked for operation during the normal maintenance period for the site on which the product is installed. It is recommended the following tests are carried out:

- 1 Visual inspection of the metering display (every year)
- 2 Operation of output contacts (every 2 years)
- 3 Secondary injection of each element (every 5 years)

2 Defect Report Form

Form sheet for repairs and returned goods (fields marked with * are mandatory fields)

* Name, first name:	Complete phone number (incl. cour	ntry code):	Complete fax number (in	cl. country code):
Email address:	* Org-ID and GBK reference:		* AWV:	
* Order-/ reference-no (choosing at least *	1 option):			
Order-no for repair:	order-/ delivery note-no for return of o failure:	commission	Beginning order-no for cr	edit note demand:
Information concerning the product and its	s use:			
* Order Code (MLFB):	Firmware version: V		* Serial number:	
* Customer: Product v	was in use approximately since:	Station/proje	ect:	Hotline Input no .:
Customer original purchase order number:	Delivery note number with position	number:	Manufacturer:	
* Type of order (choosing at least 1 option	ı):			
Repair	Return of commission failure		Credit Note	
Upgrade / Modification to	Warranty repair		Quotation (not repair	V4 and current
	For collection		products! See prices	in PMD)
Type of failure:	Mechanical problem		Overload	
Sporadic failure	Knock sensitive			
Bormon ont failuro			Failuro after ca	
Repeated breakdown	Failure after firmware update			
Error description:				
Display message:				
(use separated sheet for more info)				
Active LED messages:				
Faulty Interface(s), which?	Wrong measured value(s), which	ch?	Faulty input(s)/output	(s), which?
*Detailed error description (please refer to o	other error reports or documentation if p	oossible):		
* Shall a firmware update be made during r	repair or mechanical upgrade of prot	ective relay	s? (choosing at least 1	option)
Yes, to most recent version	No		Yes, actual paramete	rs must be reusable
repair report:				
Yes, standard report (free of charge)	Yes, detailed report (charge: 40	OEUR)		
Shipping address of the repaired/upgraded Company, department	l product:			
Name, first name				
Street, number				
Postcode, city, country				
Date, Signature				

Please contact the Siemens representative office in your country to obtain return instructions.

MSCDN – MP2B

Capacitor unbalance protection

Document Release History

This document is issue 2010/02. The list of revisions up to and including this issue is: Pre release

2010/02	Document reformat due to rebrand
11/02/2003	R1 First version

Software Revision History

23/03/2006	2621H80003R9c	

The copyright and other intellectual property rights in this document, and in any model or article produced from it (and including any registered or unregistered design rights) are the property of Siemens Protection Devices Limited. No part of this document shall be reproduced or modified or stored in another form, in any data retrieval system, without the permission of Siemens Protection Devices Limited, nor shall any model or article be reproduced from this document unless Siemens Protection Devices Limited consent.

While the information and guidance given in this document is believed to be correct, no liability shall be accepted for any loss or damage caused by any error or omission, whether such error or omission is the result of negligence or any other cause. Any and all such liability is disclaimed.

Figures

Figure 1 - Panel Fixing	3
Figure 2 - Rear Terminals	4

Figure 1 - Panel Fixing

NOT NOT NOT NOT NOT NOT NOT NOT		ABREVATIONS CONTRACT ABREVATIONS CONTRACT
	M M M M M M M M M M M M M M	11 4to 0.1 4to P.S.U.
		ROULE LABEL FOR MANOLE LABEL FOR MANOLE RABILE MANOLE RABI

Published by and copyright © 2010: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Erlangen, Germany

Siemens Protection Devices Limited P.O. Box 8 North Farm Road Hebburn Tyne & Wear NE31 1TZ United Kingdom Phone: +44 (0)191 401 7901 Fax: +44 (0)191 401 5575 www.siemens.com/energy

For more information, please contact ourCustomer Support Center.Phone:+49 180/524 70 00Fax:+49 180/524 24 71(Charges depending on provider)E-mail:support.energy@siemens.com

Power Distribution Division Order No. C53000 G7076 C26-1 Printed in Fürth

Printed on elementary chlorine-free bleached paper.

All rights reserved. Trademarks mentioned in this document are the property of Siemens AG, its affiliates, or their respective owners.

Subject to change without prior notice. The information in this document contains general descriptions of the technical options available, which may not apply in all cases. The required technical options should therefore be specified in the contract.

